Nuprl Lemma : setmem-set-part
∀s,x:coSet{i:l}.  ((x ∈ set-part(s)) ⇐⇒ (x ∈ s) ∧ isSet(x))
Proof
Definitions occuring in Statement : 
set-part: set-part(s), 
isSet: isSet(w), 
setmem: (x ∈ s), 
coSet: coSet{i:l}, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q
Definitions unfolded in proof : 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
rev_implies: P ⇐ Q, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
member: t ∈ T, 
implies: P ⇒ Q, 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
set-part: set-part(s), 
all: ∀x:A. B[x]
Lemmas referenced : 
iff_wf, 
sub-set_wf, 
isSet-set-predicate, 
coSet_wf, 
setmem-sub-coset, 
isSet_wf, 
setmem_wf
Rules used in proof : 
independent_functionElimination, 
cumulativity, 
setEquality, 
rename, 
setElimination, 
lambdaEquality, 
sqequalRule, 
dependent_functionElimination, 
impliesFunctionality, 
addLevel, 
because_Cache, 
hypothesisEquality, 
isectElimination, 
extract_by_obid, 
introduction, 
productEquality, 
hypothesis, 
thin, 
productElimination, 
sqequalHypSubstitution, 
independent_pairFormation, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}s,x:coSet\{i:l\}.    ((x  \mmember{}  set-part(s))  \mLeftarrow{}{}\mRightarrow{}  (x  \mmember{}  s)  \mwedge{}  isSet(x))
 Date html generated: 
2018_07_29-AM-09_52_41
 Last ObjectModification: 
2018_07_25-PM-03_55_54
Theory : constructive!set!theory
Home
Index