Nuprl Lemma : setTC-cosetTC
∀a:Set{i:l}. seteq(setTC(a);cosetTC(a))
Proof
Definitions occuring in Statement : 
setTC: setTC(a), 
cosetTC: cosetTC(a), 
Set: Set{i:l}, 
seteq: seteq(s1;s2), 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
prop: ℙ, 
implies: P ⇒ Q, 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x]
Lemmas referenced : 
Set_wf, 
coSet_wf, 
setsubset_wf, 
transitive-set_wf, 
setTC-least, 
setTC-transitive, 
setTC-contains, 
set-subtype-coSet, 
cosetTC-unique
Rules used in proof : 
independent_functionElimination, 
sqequalRule, 
applyEquality, 
hypothesis, 
hypothesisEquality, 
isectElimination, 
because_Cache, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}a:Set\{i:l\}.  seteq(setTC(a);cosetTC(a))
 Date html generated: 
2018_07_29-AM-10_03_46
 Last ObjectModification: 
2018_07_18-PM-08_57_42
Theory : constructive!set!theory
Home
Index