Nuprl Lemma : setTC-cosetTC

a:Set{i:l}. seteq(setTC(a);cosetTC(a))


Proof




Definitions occuring in Statement :  setTC: setTC(a) cosetTC: cosetTC(a) Set: Set{i:l} seteq: seteq(s1;s2) all: x:A. B[x]
Definitions unfolded in proof :  prop: implies:  Q subtype_rel: A ⊆B uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x]
Lemmas referenced :  Set_wf coSet_wf setsubset_wf transitive-set_wf setTC-least setTC-transitive setTC-contains set-subtype-coSet cosetTC-unique
Rules used in proof :  independent_functionElimination sqequalRule applyEquality hypothesis hypothesisEquality isectElimination because_Cache thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}a:Set\{i:l\}.  seteq(setTC(a);cosetTC(a))



Date html generated: 2018_07_29-AM-10_03_46
Last ObjectModification: 2018_07_18-PM-08_57_42

Theory : constructive!set!theory


Home Index