Nuprl Lemma : setTC-least

a:Set{i:l}. ∀s:coSet{i:l}.  ((a ⊆ s)  transitive-set(s)  (setTC(a) ⊆ s))


Proof




Definitions occuring in Statement :  transitive-set: transitive-set(s) setsubset: (a ⊆ b) setTC: setTC(a) Set: Set{i:l} coSet: coSet{i:l} all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  top: Top guard: {T} or: P ∨ Q exists: x:A. B[x] uimplies: supposing a setTC: Error :setTC,  rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q all: x:A. B[x] so_apply: x[s] subtype_rel: A ⊆B prop: implies:  Q member: t ∈ T so_lambda: λ2x.t[x] uall: [x:A]. B[x]
Lemmas referenced :  setTC_functionality coSet-seteq-Set seteq_inversion seteq_weakening setmem_functionality setmem-mk-set-sq setTC-set-function setmem-setunionfun coSet-mem-Set-implies-Set setunionfun_wf setmem-set-add transitive-set_wf transitive-set-iff setsubset_wf setsubset-iff set-subtype-coSet mk-set_wf Set_wf setmem_wf coSet_wf all_wf set-induction
Rules used in proof :  equalitySymmetry equalityTransitivity voidEquality voidElimination isect_memberEquality unionElimination setEquality dependent_pairFormation independent_isectElimination rename setElimination functionExtensionality impliesLevelFunctionality allLevelFunctionality productElimination dependent_functionElimination impliesFunctionality allFunctionality addLevel universeEquality lambdaFormation independent_functionElimination because_Cache applyEquality hypothesisEquality cumulativity functionEquality hypothesis instantiate lambdaEquality sqequalRule thin isectElimination sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution sqequalHypSubstitution extract_by_obid introduction cut

Latex:
\mforall{}a:Set\{i:l\}.  \mforall{}s:coSet\{i:l\}.    ((a  \msubseteq{}  s)  {}\mRightarrow{}  transitive-set(s)  {}\mRightarrow{}  (setTC(a)  \msubseteq{}  s))



Date html generated: 2018_07_29-AM-10_03_42
Last ObjectModification: 2018_07_18-PM-08_56_51

Theory : constructive!set!theory


Home Index