Nuprl Lemma : setTC_functionality

a,b:Set{i:l}.  (seteq(a;b)  seteq(setTC(a);setTC(b)))


Proof




Definitions occuring in Statement :  setTC: setTC(a) seteq: seteq(s1;s2) Set: Set{i:l} all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q and: P ∧ Q cand: c∧ B member: t ∈ T prop: uall: [x:A]. B[x] iff: ⇐⇒ Q rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  setTC_functionality_subset setsubset_wf Set_wf seteq-iff-setsubset setTC_wf seteq_wf all_wf
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin introduction extract_by_obid dependent_functionElimination hypothesisEquality independent_functionElimination hypothesis independent_pairFormation productEquality isectElimination addLevel allFunctionality impliesFunctionality cumulativity instantiate sqequalRule lambdaEquality functionEquality

Latex:
\mforall{}a,b:Set\{i:l\}.    (seteq(a;b)  {}\mRightarrow{}  seteq(setTC(a);setTC(b)))



Date html generated: 2018_05_22-PM-09_51_23
Last ObjectModification: 2018_05_22-AM-10_53_37

Theory : constructive!set!theory


Home Index