Nuprl Lemma : setTC_functionality
∀a,b:Set{i:l}.  (seteq(a;b) 
⇒ seteq(setTC(a);setTC(b)))
Proof
Definitions occuring in Statement : 
setTC: setTC(a)
, 
seteq: seteq(s1;s2)
, 
Set: Set{i:l}
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
setTC_functionality_subset, 
setsubset_wf, 
Set_wf, 
seteq-iff-setsubset, 
setTC_wf, 
seteq_wf, 
all_wf
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
independent_pairFormation, 
productEquality, 
isectElimination, 
addLevel, 
allFunctionality, 
impliesFunctionality, 
cumulativity, 
instantiate, 
sqequalRule, 
lambdaEquality, 
functionEquality
Latex:
\mforall{}a,b:Set\{i:l\}.    (seteq(a;b)  {}\mRightarrow{}  seteq(setTC(a);setTC(b)))
Date html generated:
2018_05_22-PM-09_51_23
Last ObjectModification:
2018_05_22-AM-10_53_37
Theory : constructive!set!theory
Home
Index