Nuprl Lemma : setTC_functionality_subset

b,a:Set{i:l}.  ((a ⊆ b)  (setTC(a) ⊆ setTC(b)))


Proof




Definitions occuring in Statement :  setsubset: (a ⊆ b) setTC: setTC(a) Set: Set{i:l} all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  set-add: b pi2: snd(t) set-item: set-item(s;x) Wsup: Wsup(a;b) mk-set: f"(T) setunionfun:  ⋃x∈s.f[x] top: Top exists: x:A. B[x] guard: {T} or: P ∨ Q setTC: Error :setTC,  subtype_rel: A ⊆B rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q all: x:A. B[x] so_apply: x[s] implies:  Q prop: member: t ∈ T so_lambda: λ2x.t[x] uall: [x:A]. B[x]
Lemmas referenced :  set-item_wf seteq_wf set-dom_wf setmem-iff seteq-iff setmem-mk-set-sq setmem-unionfun-implies setunionfun_wf setmem-set-add set-subtype-coSet setmem_wf setsubset-iff mk-set_wf setsubset_wf Set_wf all_wf set-induction
Rules used in proof :  spreadEquality dependent_pairEquality dependent_pairFormation inrFormation voidEquality voidElimination isect_memberEquality inlFormation unionElimination because_Cache setEquality rename setElimination productElimination dependent_functionElimination universeEquality applyEquality lambdaFormation independent_functionElimination hypothesisEquality functionEquality cumulativity hypothesis instantiate lambdaEquality sqequalRule thin isectElimination sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution sqequalHypSubstitution extract_by_obid introduction cut

Latex:
\mforall{}b,a:Set\{i:l\}.    ((a  \msubseteq{}  b)  {}\mRightarrow{}  (setTC(a)  \msubseteq{}  setTC(b)))



Date html generated: 2018_07_29-AM-10_03_32
Last ObjectModification: 2018_07_11-PM-10_01_00

Theory : constructive!set!theory


Home Index