Nuprl Lemma : setTC_functionality_subset
∀b,a:Set{i:l}.  ((a ⊆ b) 
⇒ (setTC(a) ⊆ setTC(b)))
Proof
Definitions occuring in Statement : 
setsubset: (a ⊆ b)
, 
setTC: setTC(a)
, 
Set: Set{i:l}
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
set-add: a + b
, 
pi2: snd(t)
, 
set-item: set-item(s;x)
, 
Wsup: Wsup(a;b)
, 
mk-set: f"(T)
, 
setunionfun:  ⋃x∈s.f[x]
, 
top: Top
, 
exists: ∃x:A. B[x]
, 
guard: {T}
, 
or: P ∨ Q
, 
setTC: Error :setTC, 
subtype_rel: A ⊆r B
, 
rev_implies: P 
⇐ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
all: ∀x:A. B[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
set-item_wf, 
seteq_wf, 
set-dom_wf, 
setmem-iff, 
seteq-iff, 
setmem-mk-set-sq, 
setmem-unionfun-implies, 
setunionfun_wf, 
setmem-set-add, 
set-subtype-coSet, 
setmem_wf, 
setsubset-iff, 
mk-set_wf, 
setsubset_wf, 
Set_wf, 
all_wf, 
set-induction
Rules used in proof : 
spreadEquality, 
dependent_pairEquality, 
dependent_pairFormation, 
inrFormation, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
inlFormation, 
unionElimination, 
because_Cache, 
setEquality, 
rename, 
setElimination, 
productElimination, 
dependent_functionElimination, 
universeEquality, 
applyEquality, 
lambdaFormation, 
independent_functionElimination, 
hypothesisEquality, 
functionEquality, 
cumulativity, 
hypothesis, 
instantiate, 
lambdaEquality, 
sqequalRule, 
thin, 
isectElimination, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut
Latex:
\mforall{}b,a:Set\{i:l\}.    ((a  \msubseteq{}  b)  {}\mRightarrow{}  (setTC(a)  \msubseteq{}  setTC(b)))
Date html generated:
2018_07_29-AM-10_03_32
Last ObjectModification:
2018_07_11-PM-10_01_00
Theory : constructive!set!theory
Home
Index