Nuprl Lemma : seteq-iff
∀s1,s2:Set{i:l}.  (seteq(s1;s2) 
⇐⇒ ∀x:Set{i:l}. ((x ∈ s1) 
⇐⇒ (x ∈ s2)))
Proof
Definitions occuring in Statement : 
Set: Set{i:l}
, 
setmem: (x ∈ s)
, 
seteq: seteq(s1;s2)
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
Definitions unfolded in proof : 
guard: {T}
, 
exists: ∃x:A. B[x]
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
rev_implies: P 
⇐ Q
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
coSet_wf, 
coSet-mem-Set-implies-Set, 
co-seteq-iff, 
setmem_wf, 
iff_wf, 
Set_wf, 
all_wf, 
set-subtype-coSet, 
seteq_wf
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
dependent_pairFormation, 
independent_isectElimination, 
independent_functionElimination, 
productElimination, 
dependent_functionElimination, 
cumulativity, 
lambdaEquality, 
instantiate, 
because_Cache, 
sqequalRule, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
independent_pairFormation, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}s1,s2:Set\{i:l\}.    (seteq(s1;s2)  \mLeftarrow{}{}\mRightarrow{}  \mforall{}x:Set\{i:l\}.  ((x  \mmember{}  s1)  \mLeftarrow{}{}\mRightarrow{}  (x  \mmember{}  s2)))
Date html generated:
2018_07_29-AM-09_51_48
Last ObjectModification:
2018_07_11-PM-02_41_24
Theory : constructive!set!theory
Home
Index