Nuprl Lemma : singlevalued-graph_functionality

A:coSet{i:l}. ∀B:{a:coSet{i:l}| (a ∈ A)}  ⟶ coSet{i:l}.
  ((∀a1,a2:coSet{i:l}.  ((a1 ∈ A)  (a2 ∈ A)  seteq(a1;a2)  seteq(B[a1];B[a2])))
   (∀g1,g2:coSet{i:l}.  (seteq(g1;g2)  (singlevalued-graph(A;a.B[a];g1) ⇐⇒ singlevalued-graph(A;a.B[a];g2)))))


Proof




Definitions occuring in Statement :  singlevalued-graph: singlevalued-graph(A;a.B[a];grph) setmem: (x ∈ s) seteq: seteq(s1;s2) coSet: coSet{i:l} so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x]
Definitions unfolded in proof :  guard: {T} rev_implies:  Q prop: uall: [x:A]. B[x] so_apply: x[s] so_lambda: λ2x.t[x] member: t ∈ T and: P ∧ Q iff: ⇐⇒ Q implies:  Q all: x:A. B[x]
Lemmas referenced :  seteq_weakening setmem_functionality all_wf seteq_wf singlevalued-graph_wf orderedpairset_wf setmem_wf coSet_wf singlevalued-graph-iff
Rules used in proof :  functionEquality instantiate because_Cache dependent_set_memberEquality productElimination independent_functionElimination isectElimination cumulativity hypothesis setEquality applyEquality lambdaEquality sqequalRule hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut independent_pairFormation lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}A:coSet\{i:l\}.  \mforall{}B:\{a:coSet\{i:l\}|  (a  \mmember{}  A)\}    {}\mrightarrow{}  coSet\{i:l\}.
    ((\mforall{}a1,a2:coSet\{i:l\}.    ((a1  \mmember{}  A)  {}\mRightarrow{}  (a2  \mmember{}  A)  {}\mRightarrow{}  seteq(a1;a2)  {}\mRightarrow{}  seteq(B[a1];B[a2])))
    {}\mRightarrow{}  (\mforall{}g1,g2:coSet\{i:l\}.
                (seteq(g1;g2)  {}\mRightarrow{}  (singlevalued-graph(A;a.B[a];g1)  \mLeftarrow{}{}\mRightarrow{}  singlevalued-graph(A;a.B[a];g2)))))



Date html generated: 2018_07_29-AM-10_05_01
Last ObjectModification: 2018_07_18-PM-04_01_17

Theory : constructive!set!theory


Home Index