Nuprl Lemma : singlevalued-graph_functionality
∀A:coSet{i:l}. ∀B:{a:coSet{i:l}| (a ∈ A)}  ⟶ coSet{i:l}.
  ((∀a1,a2:coSet{i:l}.  ((a1 ∈ A) ⇒ (a2 ∈ A) ⇒ seteq(a1;a2) ⇒ seteq(B[a1];B[a2])))
  ⇒ (∀g1,g2:coSet{i:l}.  (seteq(g1;g2) ⇒ (singlevalued-graph(A;a.B[a];g1) ⇐⇒ singlevalued-graph(A;a.B[a];g2)))))
Proof
Definitions occuring in Statement : 
singlevalued-graph: singlevalued-graph(A;a.B[a];grph), 
setmem: (x ∈ s), 
seteq: seteq(s1;s2), 
coSet: coSet{i:l}, 
so_apply: x[s], 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q, 
set: {x:A| B[x]} , 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
guard: {T}, 
rev_implies: P ⇐ Q, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
member: t ∈ T, 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q, 
all: ∀x:A. B[x]
Lemmas referenced : 
seteq_weakening, 
setmem_functionality, 
all_wf, 
seteq_wf, 
singlevalued-graph_wf, 
orderedpairset_wf, 
setmem_wf, 
coSet_wf, 
singlevalued-graph-iff
Rules used in proof : 
functionEquality, 
instantiate, 
because_Cache, 
dependent_set_memberEquality, 
productElimination, 
independent_functionElimination, 
isectElimination, 
cumulativity, 
hypothesis, 
setEquality, 
applyEquality, 
lambdaEquality, 
sqequalRule, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
independent_pairFormation, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}A:coSet\{i:l\}.  \mforall{}B:\{a:coSet\{i:l\}|  (a  \mmember{}  A)\}    {}\mrightarrow{}  coSet\{i:l\}.
    ((\mforall{}a1,a2:coSet\{i:l\}.    ((a1  \mmember{}  A)  {}\mRightarrow{}  (a2  \mmember{}  A)  {}\mRightarrow{}  seteq(a1;a2)  {}\mRightarrow{}  seteq(B[a1];B[a2])))
    {}\mRightarrow{}  (\mforall{}g1,g2:coSet\{i:l\}.
                (seteq(g1;g2)  {}\mRightarrow{}  (singlevalued-graph(A;a.B[a];g1)  \mLeftarrow{}{}\mRightarrow{}  singlevalued-graph(A;a.B[a];g2)))))
 Date html generated: 
2018_07_29-AM-10_05_01
 Last ObjectModification: 
2018_07_18-PM-04_01_17
Theory : constructive!set!theory
Home
Index