Nuprl Lemma : singlevalued-graph-iff

A:coSet{i:l}. ∀B:{a:coSet{i:l}| (a ∈ A)}  ⟶ coSet{i:l}.
  ((∀a1,a2:coSet{i:l}.  ((a1 ∈ A)  (a2 ∈ A)  seteq(a1;a2)  seteq(B[a1];B[a2])))
   (∀x:coSet{i:l}
        (singlevalued-graph(A;a.B[a];x)
        ⇐⇒ ∀a,b1,b2:coSet{i:l}.
              ((a ∈ A)  (b1 ∈ B[a])  (b2 ∈ B[a])  ((a,b1) ∈ x)  ((a,b2) ∈ x)  seteq(b1;b2)))))


Proof




Definitions occuring in Statement :  singlevalued-graph: singlevalued-graph(A;a.B[a];grph) orderedpairset: (a,b) setmem: (x ∈ s) seteq: seteq(s1;s2) coSet: coSet{i:l} so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T uall: [x:A]. B[x] prop: so_apply: x[s] so_lambda: λ2x.t[x] rev_implies:  Q singlevalued-graph: singlevalued-graph(A;a.B[a];grph) set-predicate: set-predicate{i:l}(s;a.P[a]) allsetmem: a∈A.P[a] guard: {T}
Lemmas referenced :  setmem_wf orderedpairset_wf singlevalued-graph_wf seteq_wf coSet_wf allsetmem-iff allsetmem_wf setmem_functionality_1 orderedpairset_functionality seteq_weakening seteq_functionality set-item_wf set-dom_wf setmem_functionality implies-allsetmem
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt independent_pairFormation universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality dependent_set_memberEquality_alt inhabitedIsType dependent_functionElimination sqequalRule lambdaEquality_alt setIsType functionIsType because_Cache functionEquality setElimination rename independent_functionElimination productElimination

Latex:
\mforall{}A:coSet\{i:l\}.  \mforall{}B:\{a:coSet\{i:l\}|  (a  \mmember{}  A)\}    {}\mrightarrow{}  coSet\{i:l\}.
    ((\mforall{}a1,a2:coSet\{i:l\}.    ((a1  \mmember{}  A)  {}\mRightarrow{}  (a2  \mmember{}  A)  {}\mRightarrow{}  seteq(a1;a2)  {}\mRightarrow{}  seteq(B[a1];B[a2])))
    {}\mRightarrow{}  (\mforall{}x:coSet\{i:l\}
                (singlevalued-graph(A;a.B[a];x)
                \mLeftarrow{}{}\mRightarrow{}  \mforall{}a,b1,b2:coSet\{i:l\}.
                            ((a  \mmember{}  A)
                            {}\mRightarrow{}  (b1  \mmember{}  B[a])
                            {}\mRightarrow{}  (b2  \mmember{}  B[a])
                            {}\mRightarrow{}  ((a,b1)  \mmember{}  x)
                            {}\mRightarrow{}  ((a,b2)  \mmember{}  x)
                            {}\mRightarrow{}  seteq(b1;b2)))))



Date html generated: 2020_05_20-PM-01_19_07
Last ObjectModification: 2020_01_06-PM-01_24_20

Theory : constructive!set!theory


Home Index