Nuprl Lemma : transitive-set_functionality

s1,s2:coSet{i:l}.  (seteq(s1;s2)  (transitive-set(s1) ⇐⇒ transitive-set(s2)))


Proof




Definitions occuring in Statement :  transitive-set: transitive-set(s) seteq: seteq(s1;s2) coSet: coSet{i:l} all: x:A. B[x] iff: ⇐⇒ Q implies:  Q
Definitions unfolded in proof :  guard: {T} so_apply: x[s] so_lambda: λ2x.t[x] prop: uall: [x:A]. B[x] rev_implies:  Q member: t ∈ T and: P ∧ Q iff: ⇐⇒ Q implies:  Q all: x:A. B[x]
Lemmas referenced :  setsubset_functionality seteq_weakening setmem_functionality seteq_wf setsubset_wf setmem_wf coSet_wf all_wf iff_wf transitive-set_wf transitive-set-iff
Rules used in proof :  impliesLevelFunctionality allLevelFunctionality allFunctionality because_Cache functionEquality lambdaEquality sqequalRule instantiate isectElimination cumulativity independent_functionElimination hypothesis hypothesisEquality dependent_functionElimination extract_by_obid introduction impliesFunctionality independent_pairFormation thin productElimination sqequalHypSubstitution addLevel cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}s1,s2:coSet\{i:l\}.    (seteq(s1;s2)  {}\mRightarrow{}  (transitive-set(s1)  \mLeftarrow{}{}\mRightarrow{}  transitive-set(s2)))



Date html generated: 2018_07_29-AM-10_02_49
Last ObjectModification: 2018_07_18-PM-01_32_02

Theory : constructive!set!theory


Home Index