Nuprl Lemma : transitive-set_functionality
∀s1,s2:coSet{i:l}.  (seteq(s1;s2) 
⇒ (transitive-set(s1) 
⇐⇒ transitive-set(s2)))
Proof
Definitions occuring in Statement : 
transitive-set: transitive-set(s)
, 
seteq: seteq(s1;s2)
, 
coSet: coSet{i:l}
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
guard: {T}
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
rev_implies: P 
⇐ Q
, 
member: t ∈ T
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
setsubset_functionality, 
seteq_weakening, 
setmem_functionality, 
seteq_wf, 
setsubset_wf, 
setmem_wf, 
coSet_wf, 
all_wf, 
iff_wf, 
transitive-set_wf, 
transitive-set-iff
Rules used in proof : 
impliesLevelFunctionality, 
allLevelFunctionality, 
allFunctionality, 
because_Cache, 
functionEquality, 
lambdaEquality, 
sqequalRule, 
instantiate, 
isectElimination, 
cumulativity, 
independent_functionElimination, 
hypothesis, 
hypothesisEquality, 
dependent_functionElimination, 
extract_by_obid, 
introduction, 
impliesFunctionality, 
independent_pairFormation, 
thin, 
productElimination, 
sqequalHypSubstitution, 
addLevel, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}s1,s2:coSet\{i:l\}.    (seteq(s1;s2)  {}\mRightarrow{}  (transitive-set(s1)  \mLeftarrow{}{}\mRightarrow{}  transitive-set(s2)))
Date html generated:
2018_07_29-AM-10_02_49
Last ObjectModification:
2018_07_18-PM-01_32_02
Theory : constructive!set!theory
Home
Index