Nuprl Lemma : csm-ap-id-term
∀[Gamma:CubicalSet]. ∀[A:{Gamma ⊢ _}]. ∀[t:{Gamma ⊢ _:A}].  ((t)1(Gamma) = t ∈ {Gamma ⊢ _:A})
Proof
Definitions occuring in Statement : 
csm-ap-term: (t)s, 
cubical-term: {X ⊢ _:AF}, 
cubical-type: {X ⊢ _}, 
csm-id: 1(X), 
cubical-set: CubicalSet, 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
cubical-term: {X ⊢ _:AF}, 
csm-id: 1(X), 
csm-ap-term: (t)s, 
type-cat: TypeCat, 
identity-trans: identity-trans(C;D;F), 
csm-ap: (s)x, 
cat-id: cat-id(C), 
pi2: snd(t), 
pi1: fst(t), 
so_lambda: λ2x.t[x], 
cubical-type: {X ⊢ _}, 
so_apply: x[s], 
all: ∀x:A. B[x], 
prop: ℙ
Lemmas referenced : 
cubical-term_wf, 
cubical-type_wf, 
cubical-set_wf, 
I-cube_wf, 
list_wf, 
coordinate_name_wf, 
all_wf, 
name-morph_wf, 
equal_wf, 
cube-set-restriction_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
equalitySymmetry, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
dependent_set_memberEquality, 
hypothesis, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
functionExtensionality, 
applyEquality, 
lambdaEquality, 
productElimination
Latex:
\mforall{}[Gamma:CubicalSet].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[t:\{Gamma  \mvdash{}  \_:A\}].    ((t)1(Gamma)  =  t)
Date html generated:
2016_06_16-PM-05_40_30
Last ObjectModification:
2015_12_28-PM-04_35_26
Theory : cubical!sets
Home
Index