Nuprl Lemma : csm-ap-id-term
∀[Gamma:CubicalSet]. ∀[A:{Gamma ⊢ _}]. ∀[t:{Gamma ⊢ _:A}]. ((t)1(Gamma) = t ∈ {Gamma ⊢ _:A})
Proof
Definitions occuring in Statement :
csm-ap-term: (t)s
,
cubical-term: {X ⊢ _:AF}
,
cubical-type: {X ⊢ _}
,
csm-id: 1(X)
,
cubical-set: CubicalSet
,
uall: ∀[x:A]. B[x]
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
cubical-term: {X ⊢ _:AF}
,
csm-id: 1(X)
,
csm-ap-term: (t)s
,
type-cat: TypeCat
,
identity-trans: identity-trans(C;D;F)
,
csm-ap: (s)x
,
cat-id: cat-id(C)
,
pi2: snd(t)
,
pi1: fst(t)
,
so_lambda: λ2x.t[x]
,
cubical-type: {X ⊢ _}
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
prop: ℙ
Lemmas referenced :
cubical-term_wf,
cubical-type_wf,
cubical-set_wf,
I-cube_wf,
list_wf,
coordinate_name_wf,
all_wf,
name-morph_wf,
equal_wf,
cube-set-restriction_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
equalitySymmetry,
sqequalHypSubstitution,
setElimination,
thin,
rename,
dependent_set_memberEquality,
hypothesis,
lemma_by_obid,
isectElimination,
hypothesisEquality,
sqequalRule,
isect_memberEquality,
axiomEquality,
because_Cache,
functionExtensionality,
applyEquality,
lambdaEquality,
productElimination
Latex:
\mforall{}[Gamma:CubicalSet]. \mforall{}[A:\{Gamma \mvdash{} \_\}]. \mforall{}[t:\{Gamma \mvdash{} \_:A\}]. ((t)1(Gamma) = t)
Date html generated:
2016_06_16-PM-05_40_30
Last ObjectModification:
2015_12_28-PM-04_35_26
Theory : cubical!sets
Home
Index