Nuprl Lemma : csm-id-comp
∀[A,B:CubicalSet]. ∀[sigma:A ⟶ B].  ((sigma o 1(A) = sigma ∈ A ⟶ B) ∧ (1(B) o sigma = sigma ∈ A ⟶ B))
Proof
Definitions occuring in Statement : 
csm-id: 1(X)
, 
csm-comp: G o F
, 
cube-set-map: A ⟶ B
, 
cubical-set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
csm-id: 1(X)
, 
csm-comp: G o F
, 
cube-set-map: A ⟶ B
, 
ext-eq: A ≡ B
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
true: True
, 
squash: ↓T
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
cubical-set-is-functor, 
trans-id-property, 
name-cat_wf, 
type-cat_wf, 
cube-set-map_wf, 
cubical-set_wf, 
nat-trans_wf, 
equal_wf, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairFormation, 
hypothesis, 
instantiate, 
dependent_functionElimination, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
independent_pairEquality, 
axiomEquality, 
isectElimination, 
isect_memberEquality, 
because_Cache, 
natural_numberEquality, 
lambdaEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
independent_functionElimination
Latex:
\mforall{}[A,B:CubicalSet].  \mforall{}[sigma:A  {}\mrightarrow{}  B].    ((sigma  o  1(A)  =  sigma)  \mwedge{}  (1(B)  o  sigma  =  sigma))
Date html generated:
2017_10_05-AM-10_11_19
Last ObjectModification:
2017_07_28-AM-11_17_53
Theory : cubical!sets
Home
Index