Nuprl Lemma : csm-id-comp
∀[A,B:CubicalSet]. ∀[sigma:A ⟶ B]. ((sigma o 1(A) = sigma ∈ A ⟶ B) ∧ (1(B) o sigma = sigma ∈ A ⟶ B))
Proof
Definitions occuring in Statement :
csm-id: 1(X)
,
csm-comp: G o F
,
cube-set-map: A ⟶ B
,
cubical-set: CubicalSet
,
uall: ∀[x:A]. B[x]
,
and: P ∧ Q
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
and: P ∧ Q
,
cand: A c∧ B
,
csm-id: 1(X)
,
csm-comp: G o F
,
cube-set-map: A ⟶ B
,
ext-eq: A ≡ B
,
all: ∀x:A. B[x]
,
subtype_rel: A ⊆r B
,
true: True
,
squash: ↓T
,
uimplies: b supposing a
,
guard: {T}
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
implies: P
⇒ Q
Lemmas referenced :
cubical-set-is-functor,
trans-id-property,
name-cat_wf,
type-cat_wf,
cube-set-map_wf,
cubical-set_wf,
nat-trans_wf,
equal_wf,
iff_weakening_equal
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
extract_by_obid,
sqequalHypSubstitution,
productElimination,
thin,
independent_pairFormation,
hypothesis,
instantiate,
dependent_functionElimination,
hypothesisEquality,
applyEquality,
sqequalRule,
independent_pairEquality,
axiomEquality,
isectElimination,
isect_memberEquality,
because_Cache,
natural_numberEquality,
lambdaEquality,
imageElimination,
imageMemberEquality,
baseClosed,
equalityTransitivity,
equalitySymmetry,
independent_isectElimination,
independent_functionElimination
Latex:
\mforall{}[A,B:CubicalSet]. \mforall{}[sigma:A {}\mrightarrow{} B]. ((sigma o 1(A) = sigma) \mwedge{} (1(B) o sigma = sigma))
Date html generated:
2017_10_05-AM-10_11_19
Last ObjectModification:
2017_07_28-AM-11_17_53
Theory : cubical!sets
Home
Index