Nuprl Lemma : trans-id-property

C1,C2:SmallCategory. ∀x,y:Functor(C1;C2). ∀f:nat-trans(C1;C2;x;y).
  ((trans-comp(C1;C2;x;x;y;identity-trans(C1;C2;x);f) f ∈ nat-trans(C1;C2;x;y))
  ∧ (trans-comp(C1;C2;x;y;y;f;identity-trans(C1;C2;y)) f ∈ nat-trans(C1;C2;x;y)))


Proof




Definitions occuring in Statement :  trans-comp: trans-comp(C;D;F;G;H;t1;t2) identity-trans: identity-trans(C;D;F) nat-trans: nat-trans(C;D;F;G) cat-functor: Functor(C1;C2) small-category: SmallCategory all: x:A. B[x] and: P ∧ Q equal: t ∈ T
Definitions unfolded in proof :  prop: uall: [x:A]. B[x] so_apply: x[s] so_lambda: λ2x.t[x] top: Top member: t ∈ T trans-comp: trans-comp(C;D;F;G;H;t1;t2) identity-trans: identity-trans(C;D;F) nat-trans: nat-trans(C;D;F;G) cand: c∧ B and: P ∧ Q all: x:A. B[x]
Lemmas referenced :  small-category_wf cat-functor_wf nat-trans_wf functor-arrow_wf cat-comp_wf equal_wf cat-arrow_wf all_wf cat-ob_wf functor-ob_wf cat-comp-ident ap_mk_nat_trans_lemma
Rules used in proof :  independent_pairFormation because_Cache lambdaEquality productElimination applyEquality hypothesisEquality isectElimination hypothesis voidEquality voidElimination isect_memberEquality dependent_functionElimination extract_by_obid introduction sqequalRule functionExtensionality dependent_set_memberEquality equalitySymmetry rename thin setElimination sqequalHypSubstitution cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}C1,C2:SmallCategory.  \mforall{}x,y:Functor(C1;C2).  \mforall{}f:nat-trans(C1;C2;x;y).
    ((trans-comp(C1;C2;x;x;y;identity-trans(C1;C2;x);f)  =  f)
    \mwedge{}  (trans-comp(C1;C2;x;y;y;f;identity-trans(C1;C2;y))  =  f))



Date html generated: 2017_01_11-AM-09_18_21
Last ObjectModification: 2017_01_10-PM-04_46_00

Theory : small!categories


Home Index