Nuprl Lemma : trans-id-property
∀C1,C2:SmallCategory. ∀x,y:Functor(C1;C2). ∀f:nat-trans(C1;C2;x;y).
  ((trans-comp(C1;C2;x;x;y;identity-trans(C1;C2;x);f) = f ∈ nat-trans(C1;C2;x;y))
  ∧ (trans-comp(C1;C2;x;y;y;f;identity-trans(C1;C2;y)) = f ∈ nat-trans(C1;C2;x;y)))
Proof
Definitions occuring in Statement : 
trans-comp: trans-comp(C;D;F;G;H;t1;t2)
, 
identity-trans: identity-trans(C;D;F)
, 
nat-trans: nat-trans(C;D;F;G)
, 
cat-functor: Functor(C1;C2)
, 
small-category: SmallCategory
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
top: Top
, 
member: t ∈ T
, 
trans-comp: trans-comp(C;D;F;G;H;t1;t2)
, 
identity-trans: identity-trans(C;D;F)
, 
nat-trans: nat-trans(C;D;F;G)
, 
cand: A c∧ B
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
small-category_wf, 
cat-functor_wf, 
nat-trans_wf, 
functor-arrow_wf, 
cat-comp_wf, 
equal_wf, 
cat-arrow_wf, 
all_wf, 
cat-ob_wf, 
functor-ob_wf, 
cat-comp-ident, 
ap_mk_nat_trans_lemma
Rules used in proof : 
independent_pairFormation, 
because_Cache, 
lambdaEquality, 
productElimination, 
applyEquality, 
hypothesisEquality, 
isectElimination, 
hypothesis, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
dependent_functionElimination, 
extract_by_obid, 
introduction, 
sqequalRule, 
functionExtensionality, 
dependent_set_memberEquality, 
equalitySymmetry, 
rename, 
thin, 
setElimination, 
sqequalHypSubstitution, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}C1,C2:SmallCategory.  \mforall{}x,y:Functor(C1;C2).  \mforall{}f:nat-trans(C1;C2;x;y).
    ((trans-comp(C1;C2;x;x;y;identity-trans(C1;C2;x);f)  =  f)
    \mwedge{}  (trans-comp(C1;C2;x;y;y;f;identity-trans(C1;C2;y))  =  f))
Date html generated:
2017_01_11-AM-09_18_21
Last ObjectModification:
2017_01_10-PM-04_46_00
Theory : small!categories
Home
Index