Nuprl Lemma : bind-provision_wf_context

[x:?CubicalContext]. ∀[f:CubicalContext ⟶ ?CubicalContext].  (bind-provision(x;t.f[t]) ∈ ?CubicalContext)


Proof




Definitions occuring in Statement :  cubical-context: ?CubicalContext cubical_context: CubicalContext uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] bind-provision: bind-provision(x;t.f[t])
Definitions unfolded in proof :  cubical-context: ?CubicalContext uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  bind-provision_wf cubical_context_wf provisional-type_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination hypothesis hypothesisEquality sqequalRule lambdaEquality_alt applyEquality universeIsType axiomEquality equalityTransitivity equalitySymmetry functionIsType inhabitedIsType isect_memberEquality_alt isectIsTypeImplies

Latex:
\mforall{}[x:?CubicalContext].  \mforall{}[f:CubicalContext  {}\mrightarrow{}  ?CubicalContext].
    (bind-provision(x;t.f[t])  \mmember{}  ?CubicalContext)



Date html generated: 2020_05_20-PM-08_06_59
Last ObjectModification: 2020_05_17-PM-10_34_13

Theory : cubical!type!theory


Home Index