Nuprl Lemma : bind-provision_wf

[T,S:𝕌']. ∀[x:Provisional(T)]. ∀[f:{t:T| allowed(x) ∧ (t allow(x) ∈ T)}  ⟶ Provisional(S)].
  (bind-provision(x;t.f[t]) ∈ Provisional(S))


Proof




Definitions occuring in Statement :  bind-provision: bind-provision(x;t.f[t]) allow: allow(x) allowed: allowed(x) provisional-type: Provisional(T) uall: [x:A]. B[x] so_apply: x[s] and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bind-provision: bind-provision(x;t.f[t]) and: P ∧ Q prop: uimplies: supposing a so_apply: x[s] cand: c∧ B
Lemmas referenced :  allowed_wf allow_wf provisional-type_wf istype-universe provision_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut sqequalHypSubstitution hypothesis functionIsType setIsType universeIsType hypothesisEquality sqequalRule productIsType introduction extract_by_obid isectElimination thin equalityIstype because_Cache independent_isectElimination inhabitedIsType instantiate universeEquality isect_memberEquality_alt equalityTransitivity equalitySymmetry productEquality applyEquality dependent_set_memberEquality_alt independent_pairFormation productElimination

Latex:
\mforall{}[T,S:\mBbbU{}'].  \mforall{}[x:Provisional(T)].  \mforall{}[f:\{t:T|  allowed(x)  \mwedge{}  (t  =  allow(x))\}    {}\mrightarrow{}  Provisional(S)].
    (bind-provision(x;t.f[t])  \mmember{}  Provisional(S))



Date html generated: 2020_05_20-AM-08_01_07
Last ObjectModification: 2020_05_17-PM-11_55_57

Theory : monads


Home Index