Nuprl Lemma : bind-provision_wf
∀[T,S:𝕌']. ∀[x:Provisional(T)]. ∀[f:{t:T| allowed(x) ∧ (t = allow(x) ∈ T)}  ⟶ Provisional(S)].
  (bind-provision(x;t.f[t]) ∈ Provisional(S))
Proof
Definitions occuring in Statement : 
bind-provision: bind-provision(x;t.f[t])
, 
allow: allow(x)
, 
allowed: allowed(x)
, 
provisional-type: Provisional(T)
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
bind-provision: bind-provision(x;t.f[t])
, 
and: P ∧ Q
, 
prop: ℙ
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
cand: A c∧ B
Lemmas referenced : 
allowed_wf, 
allow_wf, 
provisional-type_wf, 
istype-universe, 
provision_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
functionIsType, 
setIsType, 
universeIsType, 
hypothesisEquality, 
sqequalRule, 
productIsType, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
equalityIstype, 
because_Cache, 
independent_isectElimination, 
inhabitedIsType, 
instantiate, 
universeEquality, 
isect_memberEquality_alt, 
equalityTransitivity, 
equalitySymmetry, 
productEquality, 
applyEquality, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
productElimination
Latex:
\mforall{}[T,S:\mBbbU{}'].  \mforall{}[x:Provisional(T)].  \mforall{}[f:\{t:T|  allowed(x)  \mwedge{}  (t  =  allow(x))\}    {}\mrightarrow{}  Provisional(S)].
    (bind-provision(x;t.f[t])  \mmember{}  Provisional(S))
Date html generated:
2020_05_20-AM-08_01_07
Last ObjectModification:
2020_05_17-PM-11_55_57
Theory : monads
Home
Index