Nuprl Lemma : allowed_wf

[T:𝕌']. ∀[x:Provisional(T)].  (allowed(x) ∈ ℙ)


Proof




Definitions occuring in Statement :  allowed: allowed(x) provisional-type: Provisional(T) uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T provisional-type: Provisional(T) prop: quotient: x,y:A//B[x; y] and: P ∧ Q allowed: allowed(x) iff: ⇐⇒ Q uimplies: supposing a implies:  Q all: x:A. B[x] pi1: fst(t) rev_implies:  Q pi2: snd(t) subtype_rel: A ⊆B squash: T respects-equality: respects-equality(S;T)
Lemmas referenced :  squash_wf uimplies_subtype subtype-respects-equality provisional-type_wf istype-universe usquash-equality
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution pointwiseFunctionalityForEquality universeEquality hypothesis sqequalRule pertypeElimination promote_hyp thin productElimination productIsType equalityIstype universeIsType isectIsType extract_by_obid isectElimination hypothesisEquality because_Cache sqequalBase equalitySymmetry functionIsType equalityTransitivity inhabitedIsType lambdaFormation_alt dependent_functionElimination independent_functionElimination isect_memberEquality_alt applyEquality instantiate cumulativity independent_isectElimination imageElimination hyp_replacement dependent_set_memberEquality_alt independent_pairFormation applyLambdaEquality setElimination rename imageMemberEquality baseClosed lambdaEquality_alt isectEquality axiomEquality isectIsTypeImplies

Latex:
\mforall{}[T:\mBbbU{}'].  \mforall{}[x:Provisional(T)].    (allowed(x)  \mmember{}  \mBbbP{})



Date html generated: 2020_05_20-AM-08_00_51
Last ObjectModification: 2020_05_17-PM-07_17_30

Theory : monads


Home Index