Nuprl Lemma : provision_wf

[T:𝕌']. ∀[ok:ℙ]. ∀[v:T supposing ok].  (provision(ok; v) ∈ Provisional(T))


Proof




Definitions occuring in Statement :  provision: provision(ok; v) provisional-type: Provisional(T) uimplies: supposing a uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T provision: provision(ok; v) provisional-type: Provisional(T) uimplies: supposing a prop: and: P ∧ Q so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q rev_implies:  Q implies:  Q subtype_rel: A ⊆B squash: T cand: c∧ B all: x:A. B[x] pi1: fst(t) pi2: snd(t) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  istype-universe squash_wf iff_wf pi1_wf equal_wf pi2_wf uimplies_subtype provisional-equiv quotient-member-eq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule sqequalHypSubstitution hypothesis axiomEquality equalityTransitivity equalitySymmetry isectIsType universeIsType hypothesisEquality isect_memberEquality_alt isectElimination thin isectIsTypeImplies inhabitedIsType universeEquality instantiate extract_by_obid productEquality isectEquality cumulativity lambdaEquality_alt functionEquality applyEquality productElimination independent_functionElimination because_Cache independent_isectElimination productIsType dependent_pairEquality_alt imageElimination independent_pairFormation lambdaFormation_alt independent_pairEquality equalityIstype dependent_functionElimination

Latex:
\mforall{}[T:\mBbbU{}'].  \mforall{}[ok:\mBbbP{}].  \mforall{}[v:T  supposing  ok].    (provision(ok;  v)  \mmember{}  Provisional(T))



Date html generated: 2020_05_20-AM-08_00_45
Last ObjectModification: 2020_05_17-PM-11_02_51

Theory : monads


Home Index