Nuprl Lemma : allow_wf
∀[T:𝕌']. ∀[x:Provisional(T)].  allow(x) ∈ T supposing allowed(x)
Proof
Definitions occuring in Statement : 
allow: allow(x)
, 
allowed: allowed(x)
, 
provisional-type: Provisional(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
provisional-type: Provisional(T)
, 
quotient: x,y:A//B[x; y]
, 
and: P ∧ Q
, 
allow: allow(x)
, 
allowed: allowed(x)
, 
usquash: usquash(T)
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
pi1: fst(t)
, 
prop: ℙ
Lemmas referenced : 
allowed_wf, 
provisional-type_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
pointwiseFunctionalityForEquality, 
because_Cache, 
hypothesis, 
sqequalRule, 
pertypeElimination, 
promote_hyp, 
thin, 
productElimination, 
pertypeElimination2, 
independent_functionElimination, 
universeIsType, 
equalityTransitivity, 
equalitySymmetry, 
inhabitedIsType, 
lambdaFormation_alt, 
hypothesisEquality, 
equalityIstype, 
dependent_functionElimination, 
axiomEquality, 
extract_by_obid, 
isectElimination, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
instantiate, 
universeEquality
Latex:
\mforall{}[T:\mBbbU{}'].  \mforall{}[x:Provisional(T)].    allow(x)  \mmember{}  T  supposing  allowed(x)
Date html generated:
2020_05_20-AM-08_00_58
Last ObjectModification:
2020_05_17-PM-06_35_07
Theory : monads
Home
Index