Nuprl Lemma : allow_wf

[T:𝕌']. ∀[x:Provisional(T)].  allow(x) ∈ supposing allowed(x)


Proof




Definitions occuring in Statement :  allow: allow(x) allowed: allowed(x) provisional-type: Provisional(T) uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a provisional-type: Provisional(T) quotient: x,y:A//B[x; y] and: P ∧ Q allow: allow(x) allowed: allowed(x) usquash: usquash(T) iff: ⇐⇒ Q implies:  Q all: x:A. B[x] pi1: fst(t) prop:
Lemmas referenced :  allowed_wf provisional-type_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution pointwiseFunctionalityForEquality because_Cache hypothesis sqequalRule pertypeElimination promote_hyp thin productElimination pertypeElimination2 independent_functionElimination universeIsType equalityTransitivity equalitySymmetry inhabitedIsType lambdaFormation_alt hypothesisEquality equalityIstype dependent_functionElimination axiomEquality extract_by_obid isectElimination isect_memberEquality_alt isectIsTypeImplies instantiate universeEquality

Latex:
\mforall{}[T:\mBbbU{}'].  \mforall{}[x:Provisional(T)].    allow(x)  \mmember{}  T  supposing  allowed(x)



Date html generated: 2020_05_20-AM-08_00_58
Last ObjectModification: 2020_05_17-PM-06_35_07

Theory : monads


Home Index