Nuprl Lemma : csm-fiber-member

[X:j⊢]. ∀[T,A:{X ⊢ _}]. ∀[w:{X ⊢ _:(T ⟶ A)}]. ∀[a:{X ⊢ _:A}]. ∀[p:{X ⊢ _:Fiber(w;a)}]. ∀[H:j⊢]. ∀[s:H j⟶ X].
  ((fiber-member(p))s fiber-member((p)s) ∈ {H ⊢ _:(T)s})


Proof




Definitions occuring in Statement :  fiber-member: fiber-member(p) cubical-fiber: Fiber(w;a) cubical-fun: (A ⟶ B) csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] cubical-fiber: Fiber(w;a) fiber-member: fiber-member(p) member: t ∈ T subtype_rel: A ⊆B all: x:A. B[x] and: P ∧ Q
Lemmas referenced :  csm-ap-cubical-fst cube_set_map_wf cubical-term_wf cubical-fiber_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j cubical-fun_wf cubical-type_wf cubical_set_wf cc-snd_wf csm-ap-term_wf cube-context-adjoin_wf cc-fst_wf csm-cubical-fun cubical-app_wf_fun csm-ap-type_wf path-type_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut sqequalHypSubstitution introduction extract_by_obid isectElimination thin hypothesisEquality hypothesis universeIsType inhabitedIsType instantiate applyEquality sqequalRule because_Cache equalityTransitivity equalitySymmetry dependent_functionElimination dependent_set_memberEquality_alt independent_pairFormation productIsType equalityIstype applyLambdaEquality setElimination rename productElimination lambdaEquality_alt hyp_replacement

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[T,A:\{X  \mvdash{}  \_\}].  \mforall{}[w:\{X  \mvdash{}  \_:(T  {}\mrightarrow{}  A)\}].  \mforall{}[a:\{X  \mvdash{}  \_:A\}].  \mforall{}[p:\{X  \mvdash{}  \_:Fiber(w;a)\}].  \mforall{}[H:j\mvdash{}].
\mforall{}[s:H  j{}\mrightarrow{}  X].
    ((fiber-member(p))s  =  fiber-member((p)s))



Date html generated: 2020_05_20-PM-03_24_30
Last ObjectModification: 2020_04_07-PM-04_10_58

Theory : cubical!type!theory


Home Index