Nuprl Lemma : csm-fibrant-comp

[X,Y,Z:j⊢]. ∀[g:Z j⟶ Y]. ∀[f:Y j⟶ X]. ∀[FT:FibrantType(X)].
  (csm-fibrant-type(X;Z;f g;FT) csm-fibrant-type(Y;Z;g;csm-fibrant-type(X;Y;f;FT)) ∈ FibrantType(Z))


Proof




Definitions occuring in Statement :  csm-fibrant-type: csm-fibrant-type(G;H;s;FT) fibrant-type: FibrantType(X) csm-comp: F cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T fibrant-type: FibrantType(X) csm-fibrant-type: csm-fibrant-type(G;H;s;FT) cubical-type: {X ⊢ _} csm-ap-type: (AF)s csm-comp: F csm-ap: (s)x compose: g subtype_rel: A ⊆B
Lemmas referenced :  csm-ap-type_wf csm-composition-comp composition-op_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 fibrant-type_wf cube_set_map_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution productElimination thin rename sqequalRule dependent_pairEquality_alt setElimination hypothesis extract_by_obid isectElimination hypothesisEquality equalitySymmetry universeIsType instantiate applyEquality isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType because_Cache

Latex:
\mforall{}[X,Y,Z:j\mvdash{}].  \mforall{}[g:Z  j{}\mrightarrow{}  Y].  \mforall{}[f:Y  j{}\mrightarrow{}  X].  \mforall{}[FT:FibrantType(X)].
    (csm-fibrant-type(X;Z;f  o  g;FT)  =  csm-fibrant-type(Y;Z;g;csm-fibrant-type(X;Y;f;FT)))



Date html generated: 2020_05_20-PM-05_20_52
Last ObjectModification: 2020_04_12-AM-08_42_59

Theory : cubical!type!theory


Home Index