Nuprl Lemma : csm-fibrant-comp
∀[X,Y,Z:j⊢]. ∀[g:Z j⟶ Y]. ∀[f:Y j⟶ X]. ∀[FT:FibrantType(X)].
  (csm-fibrant-type(X;Z;f o g;FT) = csm-fibrant-type(Y;Z;g;csm-fibrant-type(X;Y;f;FT)) ∈ FibrantType(Z))
Proof
Definitions occuring in Statement : 
csm-fibrant-type: csm-fibrant-type(G;H;s;FT)
, 
fibrant-type: FibrantType(X)
, 
csm-comp: G o F
, 
cube_set_map: A ⟶ B
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
fibrant-type: FibrantType(X)
, 
csm-fibrant-type: csm-fibrant-type(G;H;s;FT)
, 
cubical-type: {X ⊢ _}
, 
csm-ap-type: (AF)s
, 
csm-comp: G o F
, 
csm-ap: (s)x
, 
compose: f o g
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
csm-ap-type_wf, 
csm-composition-comp, 
composition-op_wf, 
cubical_set_cumulativity-i-j, 
cubical-type-cumulativity2, 
fibrant-type_wf, 
cube_set_map_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
rename, 
sqequalRule, 
dependent_pairEquality_alt, 
setElimination, 
hypothesis, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
equalitySymmetry, 
universeIsType, 
instantiate, 
applyEquality, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
inhabitedIsType, 
because_Cache
Latex:
\mforall{}[X,Y,Z:j\mvdash{}].  \mforall{}[g:Z  j{}\mrightarrow{}  Y].  \mforall{}[f:Y  j{}\mrightarrow{}  X].  \mforall{}[FT:FibrantType(X)].
    (csm-fibrant-type(X;Z;f  o  g;FT)  =  csm-fibrant-type(Y;Z;g;csm-fibrant-type(X;Y;f;FT)))
Date html generated:
2020_05_20-PM-05_20_52
Last ObjectModification:
2020_04_12-AM-08_42_59
Theory : cubical!type!theory
Home
Index