Nuprl Lemma : csm-composition-comp

[X,Y,Z:j⊢]. ∀[s1:Z j⟶ Y]. ∀[s2:Y j⟶ X]. ∀[A:{X ⊢ _}]. ∀[comp:X ⊢ CompOp(A)].
  (((comp)s2)s1 (comp)s2 s1 ∈ Z ⊢ CompOp((A)s2 s1))


Proof




Definitions occuring in Statement :  csm-composition: (comp)sigma composition-op: Gamma ⊢ CompOp(A) csm-ap-type: (AF)s cubical-type: {X ⊢ _} csm-comp: F cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B cube_set_map: A ⟶ B psc_map: A ⟶ B nat-trans: nat-trans(C;D;F;G) cat-ob: cat-ob(C) pi1: fst(t) op-cat: op-cat(C) spreadn: spread4 cube-cat: CubeCat fset: fset(T) quotient: x,y:A//B[x; y] cat-arrow: cat-arrow(C) pi2: snd(t) type-cat: TypeCat all: x:A. B[x] names-hom: I ⟶ J cat-comp: cat-comp(C) compose: g uimplies: supposing a squash: T cubical-type: {X ⊢ _} csm-comp: F csm-ap-type: (AF)s csm-ap: (s)x true: True composition-op: Gamma ⊢ CompOp(A) csm-composition: (comp)sigma nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False and: P ∧ Q prop: so_lambda: λ2x.t[x] so_apply: x[s] guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  equal-composition-op csm-ap-type_wf csm-comp_wf csm-composition_wf cubical_set_cumulativity-i-j subtype_rel_self cube_set_map_wf cubical-type-cumulativity2 subtype_rel-equal composition-op_wf cubical-path-0_wf cubical-term_wf cubical-subset_wf add-name_wf cube-set-restriction_wf face-presheaf_wf2 nc-s_wf f-subset-add-name cubical-type-cumulativity formal-cube_wf1 subset-iota_wf context-map_wf I_cube_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le nat_wf not_wf fset-member_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self fset_wf cubical-type_wf cubical_set_wf csm-cubical-path-0-subtype csm-ap-csm-comp csm-ap_wf squash_wf true_wf equal_wf csm-ap-comp-type iff_weakening_equal csm-comp-context-map istype-universe csm-cubical-path-1-subtype
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis instantiate applyEquality sqequalRule because_Cache independent_isectElimination lambdaEquality_alt imageElimination setElimination rename productElimination natural_numberEquality imageMemberEquality baseClosed inhabitedIsType equalityTransitivity equalitySymmetry functionExtensionality dependent_functionElimination dependent_set_memberEquality_alt unionElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality Error :memTop,  independent_pairFormation universeIsType voidElimination setEquality intEquality lambdaFormation_alt equalityIstype hyp_replacement universeEquality

Latex:
\mforall{}[X,Y,Z:j\mvdash{}].  \mforall{}[s1:Z  j{}\mrightarrow{}  Y].  \mforall{}[s2:Y  j{}\mrightarrow{}  X].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[comp:X  \mvdash{}  CompOp(A)].
    (((comp)s2)s1  =  (comp)s2  o  s1)



Date html generated: 2020_05_20-PM-03_52_05
Last ObjectModification: 2020_04_09-PM-01_31_49

Theory : cubical!type!theory


Home Index