Nuprl Lemma : csm-composition-comp
∀[X,Y,Z:j⊢]. ∀[s1:Z j⟶ Y]. ∀[s2:Y j⟶ X]. ∀[A:{X ⊢ _}]. ∀[comp:X ⊢ CompOp(A)].
  (((comp)s2)s1 = (comp)s2 o s1 ∈ Z ⊢ CompOp((A)s2 o s1))
Proof
Definitions occuring in Statement : 
csm-composition: (comp)sigma
, 
composition-op: Gamma ⊢ CompOp(A)
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
csm-comp: G o F
, 
cube_set_map: A ⟶ B
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
cube_set_map: A ⟶ B
, 
psc_map: A ⟶ B
, 
nat-trans: nat-trans(C;D;F;G)
, 
cat-ob: cat-ob(C)
, 
pi1: fst(t)
, 
op-cat: op-cat(C)
, 
spreadn: spread4, 
cube-cat: CubeCat
, 
fset: fset(T)
, 
quotient: x,y:A//B[x; y]
, 
cat-arrow: cat-arrow(C)
, 
pi2: snd(t)
, 
type-cat: TypeCat
, 
all: ∀x:A. B[x]
, 
names-hom: I ⟶ J
, 
cat-comp: cat-comp(C)
, 
compose: f o g
, 
uimplies: b supposing a
, 
squash: ↓T
, 
cubical-type: {X ⊢ _}
, 
csm-comp: G o F
, 
csm-ap-type: (AF)s
, 
csm-ap: (s)x
, 
true: True
, 
composition-op: Gamma ⊢ CompOp(A)
, 
csm-composition: (comp)sigma
, 
nat: ℕ
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
and: P ∧ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
equal-composition-op, 
csm-ap-type_wf, 
csm-comp_wf, 
csm-composition_wf, 
cubical_set_cumulativity-i-j, 
subtype_rel_self, 
cube_set_map_wf, 
cubical-type-cumulativity2, 
subtype_rel-equal, 
composition-op_wf, 
cubical-path-0_wf, 
cubical-term_wf, 
cubical-subset_wf, 
add-name_wf, 
cube-set-restriction_wf, 
face-presheaf_wf2, 
nc-s_wf, 
f-subset-add-name, 
cubical-type-cumulativity, 
formal-cube_wf1, 
subset-iota_wf, 
context-map_wf, 
I_cube_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
nat_wf, 
not_wf, 
fset-member_wf, 
int-deq_wf, 
strong-subtype-deq-subtype, 
strong-subtype-set3, 
le_wf, 
strong-subtype-self, 
fset_wf, 
cubical-type_wf, 
cubical_set_wf, 
csm-cubical-path-0-subtype, 
csm-ap-csm-comp, 
csm-ap_wf, 
squash_wf, 
true_wf, 
equal_wf, 
csm-ap-comp-type, 
iff_weakening_equal, 
csm-comp-context-map, 
istype-universe, 
csm-cubical-path-1-subtype
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
instantiate, 
applyEquality, 
sqequalRule, 
because_Cache, 
independent_isectElimination, 
lambdaEquality_alt, 
imageElimination, 
setElimination, 
rename, 
productElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
functionExtensionality, 
dependent_functionElimination, 
dependent_set_memberEquality_alt, 
unionElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
Error :memTop, 
independent_pairFormation, 
universeIsType, 
voidElimination, 
setEquality, 
intEquality, 
lambdaFormation_alt, 
equalityIstype, 
hyp_replacement, 
universeEquality
Latex:
\mforall{}[X,Y,Z:j\mvdash{}].  \mforall{}[s1:Z  j{}\mrightarrow{}  Y].  \mforall{}[s2:Y  j{}\mrightarrow{}  X].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[comp:X  \mvdash{}  CompOp(A)].
    (((comp)s2)s1  =  (comp)s2  o  s1)
Date html generated:
2020_05_20-PM-03_52_05
Last ObjectModification:
2020_04_09-PM-01_31_49
Theory : cubical!type!theory
Home
Index