Nuprl Lemma : csm-univ-trans

[G:j⊢]. ∀[T:{G.𝕀 ⊢ _:c𝕌}]. ∀[H:j⊢]. ∀[s:H j⟶ G].
  ((univ-trans(G;T))s univ-trans(H;(T)s+) ∈ {H ⊢ _:(((decode(T))s+)[0(𝕀)] ⟶ ((decode(T))s+)[1(𝕀)])})


Proof




Definitions occuring in Statement :  univ-trans: univ-trans(G;T) universe-decode: decode(t) cubical-universe: c𝕌 interval-1: 1(𝕀) interval-0: 0(𝕀) interval-type: 𝕀 cubical-fun: (A ⟶ B) csm+: tau+ csm-id-adjoin: [u] cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T univ-trans: univ-trans(G;T) subtype_rel: A ⊆B all: x:A. B[x] universe-comp-op: compOp(t) comp-op-to-comp-fun: cop-to-cfun(cA) csm-composition: (comp)sigma csm-comp-structure: (cA)tau interval-type: 𝕀 csm+: tau+ csm-comp: F csm-ap: (s)x cubical-term-at: u(a) csm-ap-term: (t)s compose: g cc-snd: q cc-fst: p constant-cubical-type: (X) csm-ap-type: (AF)s csm-adjoin: (s;u)
Lemmas referenced :  csm-transprt-fun universe-decode_wf cube-context-adjoin_wf interval-type_wf comp-op-to-comp-fun_wf2 cubical_set_cumulativity-i-j universe-comp-op_wf cube_set_map_wf istype-cubical-universe-term cubical_set_wf csm-universe-decode
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality instantiate hypothesis applyEquality sqequalRule universeIsType isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType dependent_functionElimination Error :memTop

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[T:\{G.\mBbbI{}  \mvdash{}  \_:c\mBbbU{}\}].  \mforall{}[H:j\mvdash{}].  \mforall{}[s:H  j{}\mrightarrow{}  G].    ((univ-trans(G;T))s  =  univ-trans(H;(T)s+))



Date html generated: 2020_05_20-PM-07_32_14
Last ObjectModification: 2020_04_29-PM-11_16_01

Theory : cubical!type!theory


Home Index