Nuprl Lemma : csm-univ-trans
∀[G:j⊢]. ∀[T:{G.𝕀 ⊢ _:c𝕌}]. ∀[H:j⊢]. ∀[s:H j⟶ G].
  ((univ-trans(G;T))s = univ-trans(H;(T)s+) ∈ {H ⊢ _:(((decode(T))s+)[0(𝕀)] ⟶ ((decode(T))s+)[1(𝕀)])})
Proof
Definitions occuring in Statement : 
univ-trans: univ-trans(G;T)
, 
universe-decode: decode(t)
, 
cubical-universe: c𝕌
, 
interval-1: 1(𝕀)
, 
interval-0: 0(𝕀)
, 
interval-type: 𝕀
, 
cubical-fun: (A ⟶ B)
, 
csm+: tau+
, 
csm-id-adjoin: [u]
, 
cube-context-adjoin: X.A
, 
csm-ap-term: (t)s
, 
cubical-term: {X ⊢ _:A}
, 
csm-ap-type: (AF)s
, 
cube_set_map: A ⟶ B
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
univ-trans: univ-trans(G;T)
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
universe-comp-op: compOp(t)
, 
comp-op-to-comp-fun: cop-to-cfun(cA)
, 
csm-composition: (comp)sigma
, 
csm-comp-structure: (cA)tau
, 
interval-type: 𝕀
, 
csm+: tau+
, 
csm-comp: G o F
, 
csm-ap: (s)x
, 
cubical-term-at: u(a)
, 
csm-ap-term: (t)s
, 
compose: f o g
, 
cc-snd: q
, 
cc-fst: p
, 
constant-cubical-type: (X)
, 
csm-ap-type: (AF)s
, 
csm-adjoin: (s;u)
Lemmas referenced : 
csm-transprt-fun, 
universe-decode_wf, 
cube-context-adjoin_wf, 
interval-type_wf, 
comp-op-to-comp-fun_wf2, 
cubical_set_cumulativity-i-j, 
universe-comp-op_wf, 
cube_set_map_wf, 
istype-cubical-universe-term, 
cubical_set_wf, 
csm-universe-decode
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
instantiate, 
hypothesis, 
applyEquality, 
sqequalRule, 
universeIsType, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
inhabitedIsType, 
dependent_functionElimination, 
Error :memTop
Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[T:\{G.\mBbbI{}  \mvdash{}  \_:c\mBbbU{}\}].  \mforall{}[H:j\mvdash{}].  \mforall{}[s:H  j{}\mrightarrow{}  G].    ((univ-trans(G;T))s  =  univ-trans(H;(T)s+))
Date html generated:
2020_05_20-PM-07_32_14
Last ObjectModification:
2020_04_29-PM-11_16_01
Theory : cubical!type!theory
Home
Index