Nuprl Lemma : is-prop-contractible
∀X:j⊢. ∀A:{X ⊢ _}. ({X ⊢ _:isProp(A)}
⇒ {X ⊢ _:A}
⇒ {X ⊢ _:Contractible(A)})
Proof
Definitions occuring in Statement :
is-prop: isProp(A)
,
contractible-type: Contractible(A)
,
cubical-term: {X ⊢ _:A}
,
cubical-type: {X ⊢ _}
,
cubical_set: CubicalSet
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
is-prop: isProp(A)
,
contractible-type: Contractible(A)
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
subtype_rel: A ⊆r B
Lemmas referenced :
cubical-pi-implies-sigma,
cubical-pi_wf,
cube-context-adjoin_wf,
cubical_set_cumulativity-i-j,
cubical-type-cumulativity2,
csm-ap-type_wf,
cc-fst_wf,
path-type_wf,
csm-ap-term_wf,
cc-snd_wf,
cubical-term_wf,
is-prop_wf,
cubical-type_wf,
cubical_set_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation_alt,
sqequalHypSubstitution,
cut,
introduction,
extract_by_obid,
dependent_functionElimination,
thin,
hypothesisEquality,
instantiate,
isectElimination,
applyEquality,
hypothesis,
sqequalRule,
because_Cache,
independent_functionElimination,
universeIsType
Latex:
\mforall{}X:j\mvdash{}. \mforall{}A:\{X \mvdash{} \_\}. (\{X \mvdash{} \_:isProp(A)\} {}\mRightarrow{} \{X \mvdash{} \_:A\} {}\mRightarrow{} \{X \mvdash{} \_:Contractible(A)\})
Date html generated:
2020_05_20-PM-03_35_25
Last ObjectModification:
2020_04_06-PM-07_00_53
Theory : cubical!type!theory
Home
Index