Nuprl Lemma : is-prop-contractible

X:j⊢. ∀A:{X ⊢ _}.  ({X ⊢ _:isProp(A)}  {X ⊢ _:A}  {X ⊢ _:Contractible(A)})


Proof




Definitions occuring in Statement :  is-prop: isProp(A) contractible-type: Contractible(A) cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q is-prop: isProp(A) contractible-type: Contractible(A) member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B
Lemmas referenced :  cubical-pi-implies-sigma cubical-pi_wf cube-context-adjoin_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 csm-ap-type_wf cc-fst_wf path-type_wf csm-ap-term_wf cc-snd_wf cubical-term_wf is-prop_wf cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalHypSubstitution cut introduction extract_by_obid dependent_functionElimination thin hypothesisEquality instantiate isectElimination applyEquality hypothesis sqequalRule because_Cache independent_functionElimination universeIsType

Latex:
\mforall{}X:j\mvdash{}.  \mforall{}A:\{X  \mvdash{}  \_\}.    (\{X  \mvdash{}  \_:isProp(A)\}  {}\mRightarrow{}  \{X  \mvdash{}  \_:A\}  {}\mRightarrow{}  \{X  \mvdash{}  \_:Contractible(A)\})



Date html generated: 2020_05_20-PM-03_35_25
Last ObjectModification: 2020_04_06-PM-07_00_53

Theory : cubical!type!theory


Home Index