Nuprl Lemma : is-prop-contractible
∀X:j⊢. ∀A:{X ⊢ _}.  ({X ⊢ _:isProp(A)} 
⇒ {X ⊢ _:A} 
⇒ {X ⊢ _:Contractible(A)})
Proof
Definitions occuring in Statement : 
is-prop: isProp(A)
, 
contractible-type: Contractible(A)
, 
cubical-term: {X ⊢ _:A}
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
is-prop: isProp(A)
, 
contractible-type: Contractible(A)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
cubical-pi-implies-sigma, 
cubical-pi_wf, 
cube-context-adjoin_wf, 
cubical_set_cumulativity-i-j, 
cubical-type-cumulativity2, 
csm-ap-type_wf, 
cc-fst_wf, 
path-type_wf, 
csm-ap-term_wf, 
cc-snd_wf, 
cubical-term_wf, 
is-prop_wf, 
cubical-type_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
cut, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
instantiate, 
isectElimination, 
applyEquality, 
hypothesis, 
sqequalRule, 
because_Cache, 
independent_functionElimination, 
universeIsType
Latex:
\mforall{}X:j\mvdash{}.  \mforall{}A:\{X  \mvdash{}  \_\}.    (\{X  \mvdash{}  \_:isProp(A)\}  {}\mRightarrow{}  \{X  \mvdash{}  \_:A\}  {}\mRightarrow{}  \{X  \mvdash{}  \_:Contractible(A)\})
Date html generated:
2020_05_20-PM-03_35_25
Last ObjectModification:
2020_04_06-PM-07_00_53
Theory : cubical!type!theory
Home
Index