Nuprl Lemma : is-prop_wf

[X:j⊢]. ∀[A:{X ⊢ _}].  X ⊢ isProp(A)


Proof




Definitions occuring in Statement :  is-prop: isProp(A) cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T is-prop: isProp(A) subtype_rel: A ⊆B
Lemmas referenced :  cubical-pi_wf cube-context-adjoin_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 csm-ap-type_wf cc-fst_wf path-type_wf csm-ap-term_wf cc-snd_wf cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality instantiate applyEquality hypothesis because_Cache axiomEquality equalityTransitivity equalitySymmetry universeIsType isect_memberEquality_alt isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].    X  \mvdash{}  isProp(A)



Date html generated: 2020_05_20-PM-03_35_13
Last ObjectModification: 2020_04_06-PM-07_00_37

Theory : cubical!type!theory


Home Index