Nuprl Lemma : pres-a0_wf
∀[G:j⊢]. ∀[A,T:{G.𝕀 ⊢ _}]. ∀[f:{G.𝕀 ⊢ _:(T ⟶ A)}]. ∀[t0:{G ⊢ _:(T)[0(𝕀)]}].  (pres-a0(G;f;t0) ∈ {G ⊢ _:(A)[0(𝕀)]})
Proof
Definitions occuring in Statement : 
pres-a0: pres-a0(G;f;t0)
, 
interval-0: 0(𝕀)
, 
interval-type: 𝕀
, 
cubical-fun: (A ⟶ B)
, 
csm-id-adjoin: [u]
, 
cube-context-adjoin: X.A
, 
cubical-term: {X ⊢ _:A}
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
pres-a0: pres-a0(G;f;t0)
Lemmas referenced : 
csm-ap-term_wf, 
cube-context-adjoin_wf, 
interval-type_wf, 
cubical-fun_wf, 
csm-id-adjoin_wf-interval-0, 
csm-cubical-fun, 
csm-id-adjoin_wf, 
interval-0_wf, 
cubical-term-eqcd, 
cubical-app_wf_fun, 
csm-ap-type_wf, 
cubical_set_cumulativity-i-j, 
istype-cubical-term, 
cubical-type-cumulativity2, 
cubical-type_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
hypothesis, 
sqequalRule, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
lambdaEquality_alt, 
cumulativity, 
universeIsType, 
universeEquality, 
hyp_replacement
Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A,T:\{G.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[f:\{G.\mBbbI{}  \mvdash{}  \_:(T  {}\mrightarrow{}  A)\}].  \mforall{}[t0:\{G  \mvdash{}  \_:(T)[0(\mBbbI{})]\}].
    (pres-a0(G;f;t0)  \mmember{}  \{G  \mvdash{}  \_:(A)[0(\mBbbI{})]\})
Date html generated:
2020_05_20-PM-05_25_18
Last ObjectModification:
2020_04_18-PM-10_55_48
Theory : cubical!type!theory
Home
Index