Nuprl Lemma : pres-a0_wf

[G:j⊢]. ∀[A,T:{G.𝕀 ⊢ _}]. ∀[f:{G.𝕀 ⊢ _:(T ⟶ A)}]. ∀[t0:{G ⊢ _:(T)[0(𝕀)]}].  (pres-a0(G;f;t0) ∈ {G ⊢ _:(A)[0(𝕀)]})


Proof




Definitions occuring in Statement :  pres-a0: pres-a0(G;f;t0) interval-0: 0(𝕀) interval-type: 𝕀 cubical-fun: (A ⟶ B) csm-id-adjoin: [u] cube-context-adjoin: X.A cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B all: x:A. B[x] uimplies: supposing a pres-a0: pres-a0(G;f;t0)
Lemmas referenced :  csm-ap-term_wf cube-context-adjoin_wf interval-type_wf cubical-fun_wf csm-id-adjoin_wf-interval-0 csm-cubical-fun csm-id-adjoin_wf interval-0_wf cubical-term-eqcd cubical-app_wf_fun csm-ap-type_wf cubical_set_cumulativity-i-j istype-cubical-term cubical-type-cumulativity2 cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality because_Cache hypothesis sqequalRule dependent_functionElimination equalityTransitivity equalitySymmetry independent_isectElimination lambdaEquality_alt cumulativity universeIsType universeEquality hyp_replacement

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A,T:\{G.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[f:\{G.\mBbbI{}  \mvdash{}  \_:(T  {}\mrightarrow{}  A)\}].  \mforall{}[t0:\{G  \mvdash{}  \_:(T)[0(\mBbbI{})]\}].
    (pres-a0(G;f;t0)  \mmember{}  \{G  \mvdash{}  \_:(A)[0(\mBbbI{})]\})



Date html generated: 2020_05_20-PM-05_25_18
Last ObjectModification: 2020_04_18-PM-10_55_48

Theory : cubical!type!theory


Home Index