Nuprl Lemma : swap-interval_wf

[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}].  (swap-interval(Gamma;A) ∈ Gamma.𝕀.(A)p j⟶ Gamma.A.𝕀)


Proof




Definitions occuring in Statement :  swap-interval: swap-interval(G;A) interval-type: 𝕀 cc-fst: p cube-context-adjoin: X.A csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T swap-interval: swap-interval(G;A) cube_set_map: A ⟶ B psc_map: A ⟶ B nat-trans: nat-trans(C;D;F;G) cat-ob: cat-ob(C) pi1: fst(t) op-cat: op-cat(C) spreadn: spread4 cube-cat: CubeCat fset: fset(T) quotient: x,y:A//B[x; y] cat-arrow: cat-arrow(C) pi2: snd(t) type-cat: TypeCat functor-ob: ob(F) cube-context-adjoin: X.A I_cube: A(I) cubical-type-at: A(a) interval-type: 𝕀 constant-cubical-type: (X) interval-presheaf: 𝕀 lattice-point: Point(l) record-select: r.x dM: dM(I) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) free-dist-lattice: free-dist-lattice(T; eq) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) btrue: tt csm-ap-type: (AF)s all: x:A. B[x] names-hom: I ⟶ J cat-comp: cat-comp(C) compose: g functor-arrow: arrow(F) cube-set-restriction: f(s) cubical-type-ap-morph: (u f) dM-lift: dM-lift(I;J;f) free-dma-lift: free-dma-lift(T;eq;dm;eq2;f) free-DeMorgan-algebra-property free-dist-lattice-property lattice-extend: lattice-extend(L;eq;eqL;f;ac) lattice-fset-join: \/(s) reduce: reduce(f;k;as) list_ind: list_ind fset-image: f"(s) f-union: f-union(domeq;rngeq;s;x.g[x]) list_accum: list_accum subtype_rel: A ⊆B
Lemmas referenced :  csm-swap_wf cubical_set_cumulativity-i-j interval-type_wf cubical-type-cumulativity2 cubical-type_wf cubical_set_wf free-DeMorgan-algebra-property free-dist-lattice-property
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule thin instantiate extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry universeIsType isect_memberEquality_alt isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].    (swap-interval(Gamma;A)  \mmember{}  Gamma.\mBbbI{}.(A)p  j{}\mrightarrow{}  Gamma.A.\mBbbI{})



Date html generated: 2020_05_20-PM-02_39_50
Last ObjectModification: 2020_04_04-PM-01_36_24

Theory : cubical!type!theory


Home Index