Nuprl Lemma : term-to-path-is-refl

[X:j⊢]. ∀[A:{X ⊢ _}].  ∀a:{X ⊢ _:A}. (X ⊢ <>((a)p) refl(a) ∈ {X ⊢ _:(Path_A a)})


Proof




Definitions occuring in Statement :  cubical-refl: refl(a) term-to-path: <>(a) path-type: (Path_A b) cc-fst: p csm-ap-term: (t)s cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] all: x:A. B[x] equal: t ∈ T
Definitions unfolded in proof :  cubical-refl: refl(a) uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] subtype_rel: A ⊆B
Lemmas referenced :  cubical-refl_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 cubical-term_wf cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation_alt introduction cut lambdaFormation_alt thin instantiate extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality hypothesis universeIsType lambdaEquality_alt dependent_functionElimination axiomEquality equalityTransitivity equalitySymmetry functionIsTypeImplies inhabitedIsType isect_memberEquality_alt isectIsTypeImplies

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].    \mforall{}a:\{X  \mvdash{}  \_:A\}.  (X  \mvdash{}  <>((a)p)  =  refl(a))



Date html generated: 2020_05_20-PM-03_21_10
Last ObjectModification: 2020_04_06-PM-06_38_05

Theory : cubical!type!theory


Home Index