Nuprl Lemma : term-to-path-is-refl
∀[X:j⊢]. ∀[A:{X ⊢ _}].  ∀a:{X ⊢ _:A}. (X ⊢ <>((a)p) = refl(a) ∈ {X ⊢ _:(Path_A a a)})
Proof
Definitions occuring in Statement : 
cubical-refl: refl(a)
, 
term-to-path: <>(a)
, 
path-type: (Path_A a b)
, 
cc-fst: p
, 
csm-ap-term: (t)s
, 
cubical-term: {X ⊢ _:A}
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
cubical-refl: refl(a)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
cubical-refl_wf, 
cubical_set_cumulativity-i-j, 
cubical-type-cumulativity2, 
cubical-term_wf, 
cubical-type_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation_alt, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
universeIsType, 
lambdaEquality_alt, 
dependent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionIsTypeImplies, 
inhabitedIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies
Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].    \mforall{}a:\{X  \mvdash{}  \_:A\}.  (X  \mvdash{}  <>((a)p)  =  refl(a))
Date html generated:
2020_05_20-PM-03_21_10
Last ObjectModification:
2020_04_06-PM-06_38_05
Theory : cubical!type!theory
Home
Index