Nuprl Lemma : circle-circle-continuity1
∀e:EuclideanPlane. ∀a,b,c,d:Point.
  ((¬(a = c ∈ Point))
  
⇒ (∃p,q,x,z:Point. (a_x_b ∧ a_b_z ∧ ap=ax ∧ aq=az ∧ cp=cd ∧ cq=cd))
  
⇒ (∃y:Point. (ay=ab ∧ cy=cd)))
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
eu-between-eq: a_b_c
, 
eu-congruent: ab=cd
, 
eu-point: Point
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
cand: A c∧ B
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
euclidean-plane: EuclideanPlane
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
circle-circle-continuity, 
and_wf, 
eu-congruent_wf, 
exists_wf, 
eu-point_wf, 
eu-between-eq_wf, 
not_wf, 
equal_wf, 
euclidean-plane_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
lemma_by_obid, 
dependent_functionElimination, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
dependent_pairFormation, 
independent_pairFormation, 
isectElimination, 
setElimination, 
rename, 
sqequalRule, 
lambdaEquality, 
because_Cache, 
productEquality
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,d:Point.
    ((\mneg{}(a  =  c))
    {}\mRightarrow{}  (\mexists{}p,q,x,z:Point.  (a\_x\_b  \mwedge{}  a\_b\_z  \mwedge{}  ap=ax  \mwedge{}  aq=az  \mwedge{}  cp=cd  \mwedge{}  cq=cd))
    {}\mRightarrow{}  (\mexists{}y:Point.  (ay=ab  \mwedge{}  cy=cd)))
Date html generated:
2016_05_18-AM-06_41_44
Last ObjectModification:
2015_12_28-AM-09_23_23
Theory : euclidean!geometry
Home
Index