Nuprl Lemma : circle-circle-continuity1

e:EuclideanPlane. ∀a,b,c,d:Point.
  ((¬(a c ∈ Point))
   (∃p,q,x,z:Point. (a_x_b ∧ a_b_z ∧ ap=ax ∧ aq=az ∧ cp=cd ∧ cq=cd))
   (∃y:Point. (ay=ab ∧ cy=cd)))


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane eu-between-eq: a_b_c eu-congruent: ab=cd eu-point: Point all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q exists: x:A. B[x] and: P ∧ Q member: t ∈ T uimplies: supposing a cand: c∧ B prop: uall: [x:A]. B[x] euclidean-plane: EuclideanPlane so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  circle-circle-continuity and_wf eu-congruent_wf exists_wf eu-point_wf eu-between-eq_wf not_wf equal_wf euclidean-plane_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin cut lemma_by_obid dependent_functionElimination hypothesisEquality independent_isectElimination hypothesis dependent_pairFormation independent_pairFormation isectElimination setElimination rename sqequalRule lambdaEquality because_Cache productEquality

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,d:Point.
    ((\mneg{}(a  =  c))
    {}\mRightarrow{}  (\mexists{}p,q,x,z:Point.  (a\_x\_b  \mwedge{}  a\_b\_z  \mwedge{}  ap=ax  \mwedge{}  aq=az  \mwedge{}  cp=cd  \mwedge{}  cq=cd))
    {}\mRightarrow{}  (\mexists{}y:Point.  (ay=ab  \mwedge{}  cy=cd)))



Date html generated: 2016_05_18-AM-06_41_44
Last ObjectModification: 2015_12_28-AM-09_23_23

Theory : euclidean!geometry


Home Index