Nuprl Lemma : circle-circle-continuity2

e:EuclideanPlane. ∀a,b,c,d:Point.
  ((¬(a c ∈ Point))
   (∃p,q,x,z:Point. ((a_x_b ∧ a_b_z ∧ ap=ax ∧ aq=az ∧ cp=cd ∧ cq=cd) ∧ (x z ∈ Point))))
   (∃z1,z2:Point. (az1=ab ∧ az2=ab ∧ cz1=cd ∧ cz2=cd ∧ (z1 z2 ∈ Point)))))


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane eu-between-eq: a_b_c eu-congruent: ab=cd eu-point: Point all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q exists: x:A. B[x] and: P ∧ Q member: t ∈ T uimplies: supposing a not: ¬A false: False prop: uall: [x:A]. B[x] euclidean-plane: EuclideanPlane so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  circle-circle-continuity equal_wf eu-point_wf eu-congruent_wf not_wf exists_wf eu-between-eq_wf euclidean-plane_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin cut lemma_by_obid dependent_functionElimination hypothesisEquality independent_isectElimination hypothesis dependent_pairFormation independent_functionElimination independent_pairFormation equalitySymmetry voidElimination isectElimination setElimination rename productEquality because_Cache sqequalRule lambdaEquality

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,d:Point.
    ((\mneg{}(a  =  c))
    {}\mRightarrow{}  (\mexists{}p,q,x,z:Point.  ((a\_x\_b  \mwedge{}  a\_b\_z  \mwedge{}  ap=ax  \mwedge{}  aq=az  \mwedge{}  cp=cd  \mwedge{}  cq=cd)  \mwedge{}  (\mneg{}(x  =  z))))
    {}\mRightarrow{}  (\mexists{}z1,z2:Point.  (az1=ab  \mwedge{}  az2=ab  \mwedge{}  cz1=cd  \mwedge{}  cz2=cd  \mwedge{}  (\mneg{}(z1  =  z2)))))



Date html generated: 2016_05_18-AM-06_41_41
Last ObjectModification: 2015_12_28-AM-09_23_48

Theory : euclidean!geometry


Home Index