Nuprl Lemma : eu-be-neq
∀e:EuclideanPlane. ∀a,b,c:Point.  ((¬(a = b ∈ Point)) 
⇒ a_b_c 
⇒ (¬(a = c ∈ Point)))
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
eu-between-eq: a_b_c
, 
eu-point: Point
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
euclidean-plane: EuclideanPlane
, 
uimplies: b supposing a
Lemmas referenced : 
eu-between-eq_wf, 
eu-between-eq-same, 
equal_wf, 
eu-point_wf, 
not_wf, 
euclidean-plane_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
thin, 
equalitySymmetry, 
hypothesis, 
hyp_replacement, 
Error :applyLambdaEquality, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
setElimination, 
rename, 
because_Cache, 
hypothesisEquality, 
sqequalRule, 
independent_isectElimination, 
independent_functionElimination, 
voidElimination
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c:Point.    ((\mneg{}(a  =  b))  {}\mRightarrow{}  a\_b\_c  {}\mRightarrow{}  (\mneg{}(a  =  c)))
Date html generated:
2016_10_26-AM-07_44_43
Last ObjectModification:
2016_07_12-AM-08_11_16
Theory : euclidean!geometry
Home
Index