Nuprl Lemma : eu-be-neq

e:EuclideanPlane. ∀a,b,c:Point.  ((¬(a b ∈ Point))  a_b_c  (a c ∈ Point)))


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane eu-between-eq: a_b_c eu-point: Point all: x:A. B[x] not: ¬A implies:  Q equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q not: ¬A false: False member: t ∈ T prop: uall: [x:A]. B[x] euclidean-plane: EuclideanPlane uimplies: supposing a
Lemmas referenced :  eu-between-eq_wf eu-between-eq-same equal_wf eu-point_wf not_wf euclidean-plane_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin equalitySymmetry hypothesis hyp_replacement Error :applyLambdaEquality,  introduction extract_by_obid sqequalHypSubstitution isectElimination setElimination rename because_Cache hypothesisEquality sqequalRule independent_isectElimination independent_functionElimination voidElimination

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c:Point.    ((\mneg{}(a  =  b))  {}\mRightarrow{}  a\_b\_c  {}\mRightarrow{}  (\mneg{}(a  =  c)))



Date html generated: 2016_10_26-AM-07_44_43
Last ObjectModification: 2016_07_12-AM-08_11_16

Theory : euclidean!geometry


Home Index