Nuprl Lemma : eu-between-implies-colinear
∀e:EuclideanStructure. ∀[a,b,c:Point].  (Colinear(a;b;c)) supposing (a-b-c and (¬(a = b ∈ Point)))
Proof
Definitions occuring in Statement : 
eu-colinear: Colinear(a;b;c)
, 
eu-between: a-b-c
, 
eu-point: Point
, 
euclidean-structure: EuclideanStructure
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
Lemmas referenced : 
eu-between-eq-implies-colinear, 
eu-point_wf, 
eu-between-eq-def, 
and_wf, 
not_wf, 
equal_wf, 
eu-between_wf, 
euclidean-structure_wf
Rules used in proof : 
independent_functionElimination, 
productElimination, 
independent_isectElimination, 
rename, 
equalityEquality, 
voidElimination, 
lambdaEquality, 
sqequalRule, 
introduction, 
isectElimination, 
isect_memberFormation, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
hypothesis, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
lemma_by_obid, 
cut
Latex:
\mforall{}e:EuclideanStructure.  \mforall{}[a,b,c:Point].    (Colinear(a;b;c))  supposing  (a-b-c  and  (\mneg{}(a  =  b)))
Date html generated:
2016_05_18-AM-06_33_09
Last ObjectModification:
2016_01_03-PM-08_32_58
Theory : euclidean!geometry
Home
Index