Nuprl Lemma : eu-bisect-angle_wf
∀e:EuclideanPlane. ∀a,b,c:Point.  (eu-bisect-angle(e;a;b;c) ∈ ℙ)
Proof
Definitions occuring in Statement : 
eu-bisect-angle: eu-bisect-angle(e;a;b;c)
, 
euclidean-plane: EuclideanPlane
, 
eu-point: Point
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
eu-bisect-angle: eu-bisect-angle(e;a;b;c)
, 
prop: ℙ
, 
and: P ∧ Q
, 
uall: ∀[x:A]. B[x]
, 
euclidean-plane: EuclideanPlane
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
Lemmas referenced : 
euclidean-plane_wf, 
Error :eu-cong-angle_wf, 
exists_wf, 
eu-point_wf, 
equal_wf, 
not_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalRule, 
productEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
hypothesisEquality, 
lambdaEquality
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c:Point.    (eu-bisect-angle(e;a;b;c)  \mmember{}  \mBbbP{})
Date html generated:
2016_06_16-PM-01_31_42
Last ObjectModification:
2016_06_09-AM-09_02_05
Theory : euclidean!geometry
Home
Index