Nuprl Lemma : eu-bisect-angle_wf

e:EuclideanPlane. ∀a,b,c:Point.  (eu-bisect-angle(e;a;b;c) ∈ ℙ)


Proof




Definitions occuring in Statement :  eu-bisect-angle: eu-bisect-angle(e;a;b;c) euclidean-plane: EuclideanPlane eu-point: Point prop: all: x:A. B[x] member: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T eu-bisect-angle: eu-bisect-angle(e;a;b;c) prop: and: P ∧ Q uall: [x:A]. B[x] euclidean-plane: EuclideanPlane so_lambda: λ2x.t[x] so_apply: x[s] exists: x:A. B[x]
Lemmas referenced :  euclidean-plane_wf Error :eu-cong-angle_wf,  exists_wf eu-point_wf equal_wf not_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalRule productEquality lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename because_Cache hypothesis hypothesisEquality lambdaEquality

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c:Point.    (eu-bisect-angle(e;a;b;c)  \mmember{}  \mBbbP{})



Date html generated: 2016_06_16-PM-01_31_42
Last ObjectModification: 2016_06_09-AM-09_02_05

Theory : euclidean!geometry


Home Index