Nuprl Lemma : eu-colinear-from-between
∀e:EuclideanPlane
  ∀[A,C,D:Point].  ((¬(A = C ∈ Point)) 
⇒ (∃B:Point. ((¬(A = B ∈ Point)) ∧ A_C_B ∧ A_D_B)) 
⇒ Colinear(A;C;D))
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
eu-between-eq: a_b_c
, 
eu-colinear: Colinear(a;b;c)
, 
eu-point: Point
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
euclidean-plane: EuclideanPlane
, 
prop: ℙ
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
Lemmas referenced : 
eu-colinear-between, 
exists_wf, 
eu-point_wf, 
and_wf, 
not_wf, 
equal_wf, 
eu-between-eq_wf, 
euclidean-plane_wf
Rules used in proof : 
lambdaEquality, 
sqequalRule, 
rename, 
setElimination, 
hypothesis, 
independent_isectElimination, 
isectElimination, 
hypothesisEquality, 
dependent_functionElimination, 
lemma_by_obid, 
cut, 
thin, 
productElimination, 
sqequalHypSubstitution, 
isect_memberFormation, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}e:EuclideanPlane
    \mforall{}[A,C,D:Point].    ((\mneg{}(A  =  C))  {}\mRightarrow{}  (\mexists{}B:Point.  ((\mneg{}(A  =  B))  \mwedge{}  A\_C\_B  \mwedge{}  A\_D\_B))  {}\mRightarrow{}  Colinear(A;C;D))
Date html generated:
2016_05_18-AM-06_40_06
Last ObjectModification:
2016_01_01-PM-00_40_58
Theory : euclidean!geometry
Home
Index