Nuprl Lemma : eu-colinear-from-between

e:EuclideanPlane
  ∀[A,C,D:Point].  ((¬(A C ∈ Point))  (∃B:Point. ((¬(A B ∈ Point)) ∧ A_C_B ∧ A_D_B))  Colinear(A;C;D))


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane eu-between-eq: a_b_c eu-colinear: Colinear(a;b;c) eu-point: Point uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q equal: t ∈ T
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] euclidean-plane: EuclideanPlane prop: uimplies: supposing a member: t ∈ T and: P ∧ Q exists: x:A. B[x] implies:  Q uall: [x:A]. B[x] all: x:A. B[x]
Lemmas referenced :  eu-colinear-between exists_wf eu-point_wf and_wf not_wf equal_wf eu-between-eq_wf euclidean-plane_wf
Rules used in proof :  lambdaEquality sqequalRule rename setElimination hypothesis independent_isectElimination isectElimination hypothesisEquality dependent_functionElimination lemma_by_obid cut thin productElimination sqequalHypSubstitution isect_memberFormation lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}e:EuclideanPlane
    \mforall{}[A,C,D:Point].    ((\mneg{}(A  =  C))  {}\mRightarrow{}  (\mexists{}B:Point.  ((\mneg{}(A  =  B))  \mwedge{}  A\_C\_B  \mwedge{}  A\_D\_B))  {}\mRightarrow{}  Colinear(A;C;D))



Date html generated: 2016_05_18-AM-06_40_06
Last ObjectModification: 2016_01_01-PM-00_40_58

Theory : euclidean!geometry


Home Index