Nuprl Lemma : eu-colinear-implies-1

e:EuclideanPlane. ∀x,a,b:Point.  (Colinear(b;a;x)  Colinear(b;a;a))


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane eu-colinear: Colinear(a;b;c) eu-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  rev_implies:  Q false: False not: ¬A iff: ⇐⇒ Q cand: c∧ B and: P ∧ Q euclidean-plane: EuclideanPlane uall: [x:A]. B[x] prop: member: t ∈ T implies:  Q all: x:A. B[x]
Lemmas referenced :  eu-colinear_wf eu-point_wf euclidean-plane_wf eu-colinear-def not_wf equal_wf member_wf eu-between_wf
Rules used in proof :  productEquality voidElimination independent_pairFormation independent_functionElimination productElimination dependent_functionElimination because_Cache hypothesis hypothesisEquality rename setElimination thin isectElimination sqequalHypSubstitution lemma_by_obid cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}x,a,b:Point.    (Colinear(b;a;x)  {}\mRightarrow{}  Colinear(b;a;a))



Date html generated: 2016_05_18-AM-06_35_47
Last ObjectModification: 2016_01_04-AM-11_09_33

Theory : euclidean!geometry


Home Index