Nuprl Lemma : eu-colinear-implies-1
∀e:EuclideanPlane. ∀x,a,b:Point.  (Colinear(b;a;x) ⇒ Colinear(b;a;a))
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane, 
eu-colinear: Colinear(a;b;c), 
eu-point: Point, 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
rev_implies: P ⇐ Q, 
false: False, 
not: ¬A, 
iff: P ⇐⇒ Q, 
cand: A c∧ B, 
and: P ∧ Q, 
euclidean-plane: EuclideanPlane, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
member: t ∈ T, 
implies: P ⇒ Q, 
all: ∀x:A. B[x]
Lemmas referenced : 
eu-colinear_wf, 
eu-point_wf, 
euclidean-plane_wf, 
eu-colinear-def, 
not_wf, 
equal_wf, 
member_wf, 
eu-between_wf
Rules used in proof : 
productEquality, 
voidElimination, 
independent_pairFormation, 
independent_functionElimination, 
productElimination, 
dependent_functionElimination, 
because_Cache, 
hypothesis, 
hypothesisEquality, 
rename, 
setElimination, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
lemma_by_obid, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}x,a,b:Point.    (Colinear(b;a;x)  {}\mRightarrow{}  Colinear(b;a;a))
Date html generated:
2016_05_18-AM-06_35_47
Last ObjectModification:
2016_01_04-AM-11_09_33
Theory : euclidean!geometry
Home
Index