Nuprl Lemma : eu-le-pt_wf
∀[e:EuclideanStructure]. ∀[a,b,c,d:Point].  (eu-le-pt(e;a;b;c;d) ∈ ℙ)
Proof
Definitions occuring in Statement : 
eu-le-pt: eu-le-pt(e;a;b;c;d)
, 
eu-point: Point
, 
euclidean-structure: EuclideanStructure
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
eu-le-pt: eu-le-pt(e;a;b;c;d)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
euclidean-structure_wf, 
eu-congruent_wf, 
eu-between-eq_wf, 
and_wf, 
eu-point_wf, 
exists_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[e:EuclideanStructure].  \mforall{}[a,b,c,d:Point].    (eu-le-pt(e;a;b;c;d)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_18-AM-06_43_28
Last ObjectModification:
2016_02_19-PM-02_31_38
Theory : euclidean!geometry
Home
Index