Nuprl Lemma : eu-perpendicular_wf

[e:EuclideanPlane]. ∀[a,b,c:Point].  (Per(a;b;c) ∈ ℙ)


Proof




Definitions occuring in Statement :  eu-perpendicular: Per(a;b;c) euclidean-plane: EuclideanPlane eu-point: Point uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T eu-perpendicular: Per(a;b;c) euclidean-plane: EuclideanPlane so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  exists_wf eu-point_wf and_wf eu-midpoint_wf eu-congruent_wf euclidean-plane_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis lambdaEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[e:EuclideanPlane].  \mforall{}[a,b,c:Point].    (Per(a;b;c)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_18-AM-06_42_30
Last ObjectModification: 2015_12_28-AM-09_22_22

Theory : euclidean!geometry


Home Index