Nuprl Lemma : eu-seg-length-test2

e:EuclideanPlane. ∀s1,s2:ProperSegment. ∀t1,t2,t3:Segment.  (s1 ≡ s2  t1 ≡ t2  t2 ≡ t3  s1 t1 ≡ s2 t3)


Proof




Definitions occuring in Statement :  eu-seg-extend: t eu-seg-congruent: s1 ≡ s2 eu-proper-segment: ProperSegment eu-segment: Segment euclidean-plane: EuclideanPlane all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q prop: euclidean-plane: EuclideanPlane eu-proper-segment: ProperSegment
Lemmas referenced :  eu-seg-extend_functionality eu-seg-congruent-iff-length eu-seg-congruent_wf eu-segment_wf eu-proper-segment_wf euclidean-plane_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination independent_isectElimination hypothesis because_Cache productElimination equalityTransitivity setElimination rename

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}s1,s2:ProperSegment.  \mforall{}t1,t2,t3:Segment.
    (s1  \mequiv{}  s2  {}\mRightarrow{}  t1  \mequiv{}  t2  {}\mRightarrow{}  t2  \mequiv{}  t3  {}\mRightarrow{}  s1  +  t1  \mequiv{}  s2  +  t3)



Date html generated: 2016_05_18-AM-06_41_21
Last ObjectModification: 2015_12_28-AM-09_23_18

Theory : euclidean!geometry


Home Index