Nuprl Lemma : eu-seg-length-test2
∀e:EuclideanPlane. ∀s1,s2:ProperSegment. ∀t1,t2,t3:Segment.  (s1 ≡ s2 
⇒ t1 ≡ t2 
⇒ t2 ≡ t3 
⇒ s1 + t1 ≡ s2 + t3)
Proof
Definitions occuring in Statement : 
eu-seg-extend: s + t
, 
eu-seg-congruent: s1 ≡ s2
, 
eu-proper-segment: ProperSegment
, 
eu-segment: Segment
, 
euclidean-plane: EuclideanPlane
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
prop: ℙ
, 
euclidean-plane: EuclideanPlane
, 
eu-proper-segment: ProperSegment
Lemmas referenced : 
eu-seg-extend_functionality, 
eu-seg-congruent-iff-length, 
eu-seg-congruent_wf, 
eu-segment_wf, 
eu-proper-segment_wf, 
euclidean-plane_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
independent_isectElimination, 
hypothesis, 
because_Cache, 
productElimination, 
equalityTransitivity, 
setElimination, 
rename
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}s1,s2:ProperSegment.  \mforall{}t1,t2,t3:Segment.
    (s1  \mequiv{}  s2  {}\mRightarrow{}  t1  \mequiv{}  t2  {}\mRightarrow{}  t2  \mequiv{}  t3  {}\mRightarrow{}  s1  +  t1  \mequiv{}  s2  +  t3)
Date html generated:
2016_05_18-AM-06_41_21
Last ObjectModification:
2015_12_28-AM-09_23_18
Theory : euclidean!geometry
Home
Index