Nuprl Lemma : eu-seg-extend_functionality
∀e:EuclideanPlane. ∀[s1,s2:ProperSegment]. ∀[t1,t2:Segment].  (s1 + t1 ≡ s2 + t2) supposing (t1 ≡ t2 and s1 ≡ s2)
Proof
Definitions occuring in Statement : 
eu-seg-extend: s + t
, 
eu-seg-congruent: s1 ≡ s2
, 
eu-proper-segment: ProperSegment
, 
eu-segment: Segment
, 
euclidean-plane: EuclideanPlane
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
euclidean-plane: EuclideanPlane
, 
subtype_rel: A ⊆r B
, 
eu-proper-segment: ProperSegment
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
euclidean-axioms: euclidean-axioms(e)
, 
and: P ∧ Q
, 
squash: ↓T
, 
prop: ℙ
, 
not: ¬A
, 
false: False
, 
eu-seg-extend: s + t
, 
eu-seg-congruent: s1 ≡ s2
, 
eu-seg2: s.2
, 
eu-seg1: s.1
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
eu-seg-proper: proper(s)
, 
eu-congruent: ab=cd
, 
record-select: r.x
Lemmas referenced : 
eu-congruent-symmetry, 
eu-congruent-transitivity, 
eu-three-segment, 
eu-congruent_wf, 
eu-between-eq_wf, 
and_wf, 
eu-extend_wf, 
not_wf, 
eu-seg2_wf, 
eu-seg1_wf, 
eu-point_wf, 
equal_wf, 
euclidean-plane_wf, 
eu-segment_wf, 
eu-seg-congruent_wf, 
eu-proper-segment_wf, 
eu-seg-extend_wf, 
sq_stable_eu-seg-congruent
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
cut, 
hypothesisEquality, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
lemma_by_obid, 
dependent_functionElimination, 
isectElimination, 
hypothesis, 
applyEquality, 
lambdaEquality, 
sqequalRule, 
independent_functionElimination, 
introduction, 
productElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
dependent_set_memberEquality, 
because_Cache, 
equalityEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination
Latex:
\mforall{}e:EuclideanPlane
    \mforall{}[s1,s2:ProperSegment].  \mforall{}[t1,t2:Segment].    (s1  +  t1  \mequiv{}  s2  +  t2)  supposing  (t1  \mequiv{}  t2  and  s1  \mequiv{}  s2)
Date html generated:
2016_05_18-AM-06_37_10
Last ObjectModification:
2016_01_16-PM-10_31_56
Theory : euclidean!geometry
Home
Index