Nuprl Lemma : eu-seg-extend_functionality

e:EuclideanPlane. ∀[s1,s2:ProperSegment]. ∀[t1,t2:Segment].  (s1 t1 ≡ s2 t2) supposing (t1 ≡ t2 and s1 ≡ s2)


Proof




Definitions occuring in Statement :  eu-seg-extend: t eu-seg-congruent: s1 ≡ s2 eu-proper-segment: ProperSegment eu-segment: Segment euclidean-plane: EuclideanPlane uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T euclidean-plane: EuclideanPlane subtype_rel: A ⊆B eu-proper-segment: ProperSegment sq_stable: SqStable(P) implies:  Q euclidean-axioms: euclidean-axioms(e) and: P ∧ Q squash: T prop: not: ¬A false: False eu-seg-extend: t eu-seg-congruent: s1 ≡ s2 eu-seg2: s.2 eu-seg1: s.1 pi1: fst(t) pi2: snd(t) eu-seg-proper: proper(s) eu-congruent: ab=cd record-select: r.x
Lemmas referenced :  eu-congruent-symmetry eu-congruent-transitivity eu-three-segment eu-congruent_wf eu-between-eq_wf and_wf eu-extend_wf not_wf eu-seg2_wf eu-seg1_wf eu-point_wf equal_wf euclidean-plane_wf eu-segment_wf eu-seg-congruent_wf eu-proper-segment_wf eu-seg-extend_wf sq_stable_eu-seg-congruent
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut hypothesisEquality sqequalHypSubstitution setElimination thin rename lemma_by_obid dependent_functionElimination isectElimination hypothesis applyEquality lambdaEquality sqequalRule independent_functionElimination introduction productElimination imageMemberEquality baseClosed imageElimination dependent_set_memberEquality because_Cache equalityEquality equalityTransitivity equalitySymmetry independent_isectElimination

Latex:
\mforall{}e:EuclideanPlane
    \mforall{}[s1,s2:ProperSegment].  \mforall{}[t1,t2:Segment].    (s1  +  t1  \mequiv{}  s2  +  t2)  supposing  (t1  \mequiv{}  t2  and  s1  \mequiv{}  s2)



Date html generated: 2016_05_18-AM-06_37_10
Last ObjectModification: 2016_01_16-PM-10_31_56

Theory : euclidean!geometry


Home Index