Nuprl Lemma : eu-seg-extend_wf
∀[e:EuclideanPlane]. ∀[s:ProperSegment]. ∀[t:Segment].  (s + t ∈ ProperSegment)
Proof
Definitions occuring in Statement : 
eu-seg-extend: s + t
, 
eu-proper-segment: ProperSegment
, 
eu-segment: Segment
, 
euclidean-plane: EuclideanPlane
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
eu-seg-extend: s + t
, 
eu-proper-segment: ProperSegment
, 
euclidean-plane: EuclideanPlane
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
eu-seg-proper: proper(s)
, 
eu-segment: Segment
, 
eu-seg2: s.2
, 
eu-seg1: s.1
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
false: False
, 
euclidean-axioms: euclidean-axioms(e)
, 
and: P ∧ Q
, 
uimplies: b supposing a
Lemmas referenced : 
eu-seg1_wf, 
eu-extend_wf, 
equal_wf, 
eu-point_wf, 
eu-seg2_wf, 
not_wf, 
eu-seg-proper_wf, 
eu-segment_wf, 
eu-proper-segment_wf, 
euclidean-plane_wf, 
eu-between-eq_wf, 
eu-congruent_wf, 
eu-between-eq-same
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
dependent_set_memberEquality, 
independent_pairEquality, 
extract_by_obid, 
isectElimination, 
because_Cache, 
hypothesis, 
hypothesisEquality, 
lambdaFormation, 
applyEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
independent_functionElimination, 
productElimination, 
hyp_replacement, 
Error :applyLambdaEquality, 
productEquality, 
independent_isectElimination, 
voidElimination
Latex:
\mforall{}[e:EuclideanPlane].  \mforall{}[s:ProperSegment].  \mforall{}[t:Segment].    (s  +  t  \mmember{}  ProperSegment)
Date html generated:
2016_10_26-AM-07_41_34
Last ObjectModification:
2016_07_12-AM-08_07_44
Theory : euclidean!geometry
Home
Index