Nuprl Lemma : eu-seg-extend_wf

[e:EuclideanPlane]. ∀[s:ProperSegment]. ∀[t:Segment].  (s t ∈ ProperSegment)


Proof




Definitions occuring in Statement :  eu-seg-extend: t eu-proper-segment: ProperSegment eu-segment: Segment euclidean-plane: EuclideanPlane uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T eu-seg-extend: t eu-proper-segment: ProperSegment euclidean-plane: EuclideanPlane not: ¬A implies:  Q prop: subtype_rel: A ⊆B eu-seg-proper: proper(s) eu-segment: Segment eu-seg2: s.2 eu-seg1: s.1 pi1: fst(t) pi2: snd(t) false: False euclidean-axioms: euclidean-axioms(e) and: P ∧ Q uimplies: supposing a
Lemmas referenced :  eu-seg1_wf eu-extend_wf equal_wf eu-point_wf eu-seg2_wf not_wf eu-seg-proper_wf eu-segment_wf eu-proper-segment_wf euclidean-plane_wf eu-between-eq_wf eu-congruent_wf eu-between-eq-same
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution setElimination thin rename dependent_set_memberEquality independent_pairEquality extract_by_obid isectElimination because_Cache hypothesis hypothesisEquality lambdaFormation applyEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality independent_functionElimination productElimination hyp_replacement Error :applyLambdaEquality,  productEquality independent_isectElimination voidElimination

Latex:
\mforall{}[e:EuclideanPlane].  \mforall{}[s:ProperSegment].  \mforall{}[t:Segment].    (s  +  t  \mmember{}  ProperSegment)



Date html generated: 2016_10_26-AM-07_41_34
Last ObjectModification: 2016_07_12-AM-08_07_44

Theory : euclidean!geometry


Home Index