Nuprl Lemma : eu-seg-proper_wf

[e:EuclideanStructure]. ∀[s:Segment].  (proper(s) ∈ ℙ)


Proof




Definitions occuring in Statement :  eu-seg-proper: proper(s) eu-segment: Segment euclidean-structure: EuclideanStructure uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T eu-seg-proper: proper(s)
Lemmas referenced :  not_wf equal_wf eu-point_wf eu-seg1_wf eu-seg2_wf eu-segment_wf euclidean-structure_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[e:EuclideanStructure].  \mforall{}[s:Segment].    (proper(s)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_18-AM-06_36_31
Last ObjectModification: 2015_12_28-AM-09_25_47

Theory : euclidean!geometry


Home Index