Nuprl Lemma : euclid-P2
∀e:EuclideanPlane. ∀A,B,C:Point.  ∃L:Point. AL=BC supposing ¬(A = B ∈ Point)
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
eu-congruent: ab=cd
, 
eu-point: Point
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
uall: ∀[x:A]. B[x]
, 
euclidean-plane: EuclideanPlane
, 
prop: ℙ
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
Lemmas referenced : 
eu-point_wf, 
not_wf, 
equal_wf, 
euclidean-plane_wf, 
eu-congruent_wf, 
eu-extend-exists
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
voidElimination, 
equalityEquality, 
lemma_by_obid, 
isectElimination, 
setElimination, 
rename, 
hypothesis, 
independent_functionElimination, 
equalitySymmetry, 
dependent_set_memberEquality, 
productElimination, 
dependent_pairFormation
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}A,B,C:Point.    \mexists{}L:Point.  AL=BC  supposing  \mneg{}(A  =  B)
Date html generated:
2016_05_18-AM-06_45_58
Last ObjectModification:
2015_12_28-AM-09_21_53
Theory : euclidean!geometry
Home
Index