Step * 1 1 1 3 1 1 2 1 1 of Lemma Euclid-Prop21


1. EuclideanPlane
2. Point
3. Point
4. Point
5. Point
6. leftof bc
7. leftof bc
8. leftof ca
9. leftof ab
10. leftof bd
11. leftof db
12. Point
13. B(axc)
14. x
15. c
16. b-d-x
17. |bx| < |ba| |ax|
18. |ac| |ax| |xc| ∈ Length
19. |ba| |ax| |xc| |ba| |ax| |xc| ∈ Length
20. X < |ba| |ax|
21. |ba| |ax|  (X < |ba| |ax| ∨ |ba| |ax| < X)
22. |ba| |ax|  X < |ba| |ax| ∨ |ba| |ax| < X
⊢ |ba| |ax|
BY
((D -1 THENA (Auto THEN MemTypeCD)) THEN Auto) }


Latex:


Latex:

1.  g  :  EuclideanPlane
2.  a  :  Point
3.  b  :  Point
4.  c  :  Point
5.  d  :  Point
6.  a  leftof  bc
7.  d  leftof  bc
8.  d  leftof  ca
9.  d  leftof  ab
10.  a  leftof  bd
11.  c  leftof  db
12.  x  :  Point
13.  B(axc)
14.  a  \#  x
15.  x  \#  c
16.  b-d-x
17.  |bx|  <  |ba|  +  |ax|
18.  |ac|  =  |ax|  +  |xc|
19.  |ba|  +  |ax|  +  |xc|  =  |ba|  +  |ax|  +  |xc|
20.  X  <  |ba|  +  |ax|
21.  X  \#  |ba|  +  |ax|  {}\mRightarrow{}  (X  <  |ba|  +  |ax|  \mvee{}  |ba|  +  |ax|  <  X)
22.  X  \#  |ba|  +  |ax|  \mLeftarrow{}{}  X  <  |ba|  +  |ax|  \mvee{}  |ba|  +  |ax|  <  X
\mvdash{}  X  \#  |ba|  +  |ax|


By


Latex:
((D  -1  THENA  (Auto  THEN  MemTypeCD))  THEN  Auto)




Home Index