Nuprl Lemma : Euclid-drop-perp-00

e:EuclideanPlane. ∀a:Point. ∀b:{b:Point| a ≠ b} . ∀c:Point.  ∃x,p:Point. (Colinear(p;x;c) ∧ ab  ⊥px ∧ ab ∧ x ≠ c)


Proof




Definitions occuring in Statement :  geo-perp-in: ab  ⊥cd euclidean-plane: EuclideanPlane geo-lsep: bc geo-colinear: Colinear(a;b;c) geo-sep: a ≠ b geo-point: Point all: x:A. B[x] exists: x:A. B[x] and: P ∧ Q set: {x:A| B[x]} 
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T exists: x:A. B[x] sq_exists: x:A [B[x]] and: P ∧ Q cand: c∧ B subtype_rel: A ⊆B uall: [x:A]. B[x] guard: {T} uimplies: supposing a sq_stable: SqStable(P) implies:  Q squash: T basic-geometry: BasicGeometry euclidean-plane: EuclideanPlane prop: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  Euclid-drop-perp-0-ext sq_stable__colinear euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf sq_stable__geo-perp-in sq_stable__geo-lsep sq_stable__geo-sep geo-colinear_wf geo-perp-in_wf geo-lsep_wf geo-sep_wf exists_wf geo-point_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality productElimination dependent_pairFormation setElimination rename applyEquality instantiate isectElimination independent_isectElimination sqequalRule because_Cache independent_functionElimination imageMemberEquality baseClosed imageElimination independent_pairFormation productEquality lambdaEquality setEquality

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a:Point.  \mforall{}b:\{b:Point|  a  \mneq{}  b\}  .  \mforall{}c:Point.
    \mexists{}x,p:Point.  (Colinear(p;x;c)  \mwedge{}  ab    \mbot{}p  px  \mwedge{}  x  \#  ab  \mwedge{}  x  \mneq{}  c)



Date html generated: 2018_05_22-PM-00_11_29
Last ObjectModification: 2018_05_19-PM-08_48_45

Theory : euclidean!plane!geometry


Home Index