Nuprl Lemma : complete-pgeo-dual_wf

[pg:ProjectivePlaneStructure]. ∀[l:Line].  (complete-pgeo-dual(pg;l) ∈ ProjectivePlaneStructureComplete)


Proof




Definitions occuring in Statement :  complete-pgeo-dual: complete-pgeo-dual(pg;l) projective-plane-structure-complete: ProjectivePlaneStructureComplete projective-plane-structure: ProjectivePlaneStructure pgeo-line: Line uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  btrue: tt mk-pgeo-prim: mk-pgeo-prim pgeo-dual-prim: pg* bfalse: ff eq_atom: =a y ifthenelse: if then else fi  record-update: r[x := v] mk-pgeo: mk-pgeo(p; ss; por; lor; j; m; p3; l3) pgeo-dual: pg* pgeo-point: Point record-select: r.x pgeo-line: Line uimplies: supposing a subtype_rel: A ⊆B complete-pgeo-dual: complete-pgeo-dual(pg;l) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  projective-plane-structure_wf pgeo-line_wf projective-plane-structure_subtype pgeo-point_wf subtype_rel-equal pgeo-dual_wf mk-complete-pgeo_wf
Rules used in proof :  isect_memberEquality equalitySymmetry equalityTransitivity axiomEquality independent_isectElimination because_Cache applyEquality hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[pg:ProjectivePlaneStructure].  \mforall{}[l:Line].
    (complete-pgeo-dual(pg;l)  \mmember{}  ProjectivePlaneStructureComplete)



Date html generated: 2018_05_22-PM-00_28_53
Last ObjectModification: 2017_11_27-PM-04_03_40

Theory : euclidean!plane!geometry


Home Index