Nuprl Lemma : congruence-preserves-lsep

g:EuclideanPlane. ∀a,b,c,A,B,C:Point.  (ab ≅ AB  ac ≅ AC  bc ≅ BC  ab  (¬¬AB))


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane geo-lsep: bc geo-congruent: ab ≅ cd geo-point: Point all: x:A. B[x] not: ¬A implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q not: ¬A false: False member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q basic-geometry: BasicGeometry uall: [x:A]. B[x] cand: c∧ B uimplies: supposing a prop: guard: {T} rev_implies:  Q subtype_rel: A ⊆B
Lemmas referenced :  not-lsep-iff-colinear geo-congruent-preserves-colinear geo-colinear_wf geo-congruent_wf geo-colinear-symmetry geo-congruent-full-symmetry geo-lsep_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf istype-void geo-point_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut thin introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination hypothesisEquality hypothesis productElimination independent_functionElimination sqequalRule isectElimination independent_isectElimination because_Cache isectIsType universeIsType independent_pairFormation voidElimination functionIsType applyEquality instantiate inhabitedIsType

Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c,A,B,C:Point.    (ab  \mcong{}  AB  {}\mRightarrow{}  ac  \mcong{}  AC  {}\mRightarrow{}  bc  \mcong{}  BC  {}\mRightarrow{}  c  \#  ab  {}\mRightarrow{}  (\mneg{}\mneg{}C  \#  AB))



Date html generated: 2019_10_16-PM-01_43_17
Last ObjectModification: 2018_12_11-PM-06_11_55

Theory : euclidean!plane!geometry


Home Index