Nuprl Lemma : congruence-preserves-lsep
∀g:EuclideanPlane. ∀a,b,c,A,B,C:Point.  (ab ≅ AB 
⇒ ac ≅ AC 
⇒ bc ≅ BC 
⇒ c # ab 
⇒ (¬¬C # AB))
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
geo-lsep: a # bc
, 
geo-congruent: ab ≅ cd
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
member: t ∈ T
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
basic-geometry: BasicGeometry
, 
uall: ∀[x:A]. B[x]
, 
cand: A c∧ B
, 
uimplies: b supposing a
, 
prop: ℙ
, 
guard: {T}
, 
rev_implies: P 
⇐ Q
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
not-lsep-iff-colinear, 
geo-congruent-preserves-colinear, 
geo-colinear_wf, 
geo-congruent_wf, 
geo-colinear-symmetry, 
geo-congruent-full-symmetry, 
geo-lsep_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
istype-void, 
geo-point_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_functionElimination, 
sqequalRule, 
isectElimination, 
independent_isectElimination, 
because_Cache, 
isectIsType, 
universeIsType, 
independent_pairFormation, 
voidElimination, 
functionIsType, 
applyEquality, 
instantiate, 
inhabitedIsType
Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c,A,B,C:Point.    (ab  \mcong{}  AB  {}\mRightarrow{}  ac  \mcong{}  AC  {}\mRightarrow{}  bc  \mcong{}  BC  {}\mRightarrow{}  c  \#  ab  {}\mRightarrow{}  (\mneg{}\mneg{}C  \#  AB))
Date html generated:
2019_10_16-PM-01_43_17
Last ObjectModification:
2018_12_11-PM-06_11_55
Theory : euclidean!plane!geometry
Home
Index