Nuprl Lemma : erected-perp-opp-side-triangle
∀e:HeytingGeometry. ∀a,b,c,p,t:Point.
  ((c # ba ∧ ((ab ⊥ pa ∧ Colinear(a;b;t)) ∧ p-t-c) ∧ p # ba) 
⇒ geo-tar-opp-side(e;p;c;a;b))
Proof
Definitions occuring in Statement : 
geo-triangle: a # bc
, 
heyting-geometry: HeytingGeometry
, 
geo-perp: ab ⊥ cd
, 
geo-tar-opp-side: geo-tar-opp-side(e;a;b;p;q)
, 
geo-colinear: Colinear(a;b;c)
, 
geo-strict-between: a-b-c
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
guard: {T}
, 
cand: A c∧ B
, 
geo-tar-opp-side: geo-tar-opp-side(e;a;b;p;q)
, 
geo-lsep: a # bc
, 
or: P ∨ Q
, 
geo-triangle: a # bc
, 
exists: ∃x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
heyting-geometry: HeytingGeometry
, 
euclidean-plane: EuclideanPlane
, 
basic-geometry-: BasicGeometry-
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
uimplies: b supposing a
, 
basic-geometry: BasicGeometry
Lemmas referenced : 
geo-triangle-symmetry, 
geo-strict-between-implies-between, 
subtype_rel_self, 
euclidean-plane-structure_wf, 
basic-geo-axioms_wf, 
geo-left-axioms_wf, 
geo-colinear_wf, 
geo-between_wf, 
geo-triangle_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
heyting-geometry-subtype, 
subtype_rel_transitivity, 
heyting-geometry_wf, 
euclidean-plane_wf, 
geo-primitives_wf, 
geo-perp_wf, 
geo-strict-between_wf, 
geo-point_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
because_Cache, 
independent_pairFormation, 
dependent_pairFormation, 
applyEquality, 
sqequalRule, 
instantiate, 
isectElimination, 
setEquality, 
productEquality, 
cumulativity, 
independent_isectElimination
Latex:
\mforall{}e:HeytingGeometry.  \mforall{}a,b,c,p,t:Point.
    ((c  \#  ba  \mwedge{}  ((ab  \mbot{}  pa  \mwedge{}  Colinear(a;b;t))  \mwedge{}  p-t-c)  \mwedge{}  p  \#  ba)  {}\mRightarrow{}  geo-tar-opp-side(e;p;c;a;b))
Date html generated:
2017_10_02-PM-07_08_03
Last ObjectModification:
2017_08_10-PM-04_53_56
Theory : euclidean!plane!geometry
Home
Index