Nuprl Lemma : erected-perp-opp-side-triangle

e:HeytingGeometry. ∀a,b,c,p,t:Point.
  ((c ba ∧ ((ab ⊥ pa ∧ Colinear(a;b;t)) ∧ p-t-c) ∧ ba)  geo-tar-opp-side(e;p;c;a;b))


Proof




Definitions occuring in Statement :  geo-triangle: bc heyting-geometry: HeytingGeometry geo-perp: ab ⊥ cd geo-tar-opp-side: geo-tar-opp-side(e;a;b;p;q) geo-colinear: Colinear(a;b;c) geo-strict-between: a-b-c geo-point: Point all: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q and: P ∧ Q member: t ∈ T guard: {T} cand: c∧ B geo-tar-opp-side: geo-tar-opp-side(e;a;b;p;q) geo-lsep: bc or: P ∨ Q geo-triangle: bc exists: x:A. B[x] subtype_rel: A ⊆B heyting-geometry: HeytingGeometry euclidean-plane: EuclideanPlane basic-geometry-: BasicGeometry- uall: [x:A]. B[x] prop: uimplies: supposing a basic-geometry: BasicGeometry
Lemmas referenced :  geo-triangle-symmetry geo-strict-between-implies-between subtype_rel_self euclidean-plane-structure_wf basic-geo-axioms_wf geo-left-axioms_wf geo-colinear_wf geo-between_wf geo-triangle_wf euclidean-plane-structure-subtype euclidean-plane-subtype heyting-geometry-subtype subtype_rel_transitivity heyting-geometry_wf euclidean-plane_wf geo-primitives_wf geo-perp_wf geo-strict-between_wf geo-point_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin cut introduction extract_by_obid dependent_functionElimination hypothesisEquality independent_functionElimination hypothesis because_Cache independent_pairFormation dependent_pairFormation applyEquality sqequalRule instantiate isectElimination setEquality productEquality cumulativity independent_isectElimination

Latex:
\mforall{}e:HeytingGeometry.  \mforall{}a,b,c,p,t:Point.
    ((c  \#  ba  \mwedge{}  ((ab  \mbot{}  pa  \mwedge{}  Colinear(a;b;t))  \mwedge{}  p-t-c)  \mwedge{}  p  \#  ba)  {}\mRightarrow{}  geo-tar-opp-side(e;p;c;a;b))



Date html generated: 2017_10_02-PM-07_08_03
Last ObjectModification: 2017_08_10-PM-04_53_56

Theory : euclidean!plane!geometry


Home Index