Nuprl Lemma : geo-Aparallel-equiv

g:EuclideanParPlane. EquivRel(Line;l,m.l || m)


Proof




Definitions occuring in Statement :  euclidean-parallel-plane: EuclideanParPlane geo-Aparallel: || m geo-line: Line equiv_rel: EquivRel(T;x,y.E[x; y]) all: x:A. B[x]
Definitions unfolded in proof :  trans: Trans(T;x,y.E[x; y]) prop: sym: Sym(T;x,y.E[x; y]) cand: c∧ B uimplies: supposing a guard: {T} implies:  Q uall: [x:A]. B[x] subtype_rel: A ⊆B euclidean-parallel-plane: EuclideanParPlane member: t ∈ T refl: Refl(T;x,y.E[x; y]) and: P ∧ Q equiv_rel: EquivRel(T;x,y.E[x; y]) all: x:A. B[x]
Lemmas referenced :  geo-Aparallel_transitivity geo-Aparallel_wf geo-Aparallel_inversion geo-primitives_wf euclidean-plane-structure_wf euclidean-plane_wf euclidean-parallel-plane_wf subtype_rel_transitivity euclidean-planes-subtype euclidean-plane-subtype euclidean-plane-structure-subtype geo-line_wf geoline-subtype1 geo-Aparallel_weakening
Rules used in proof :  independent_isectElimination instantiate independent_functionElimination because_Cache sqequalRule isectElimination applyEquality hypothesis hypothesisEquality rename setElimination thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut independent_pairFormation lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}g:EuclideanParPlane.  EquivRel(Line;l,m.l  ||  m)



Date html generated: 2018_05_22-PM-01_11_05
Last ObjectModification: 2018_05_21-AM-01_33_28

Theory : euclidean!plane!geometry


Home Index