Nuprl Lemma : geo-between-out-implies-out2
∀e:EuclideanPlane. ∀a,b,c,c':Point.  (out(a cc') 
⇒ ((a_b_c ∧ a ≠ b) ∨ (a_c_b ∧ a ≠ c)) 
⇒ out(a c'b))
Proof
Definitions occuring in Statement : 
geo-out: out(p ab)
, 
euclidean-plane: EuclideanPlane
, 
geo-between: a_b_c
, 
geo-sep: a ≠ b
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
prop: ℙ
, 
basic-geometry: BasicGeometry
, 
geo-out: out(p ab)
Lemmas referenced : 
geo-between_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-sep_wf, 
geo-out_wf, 
geo-point_wf, 
geo-between-out, 
geo-out_transitivity, 
geo-out_inversion, 
geo-between-sep
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
unionElimination, 
thin, 
sqequalRule, 
unionIsType, 
productIsType, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
instantiate, 
independent_isectElimination, 
because_Cache, 
inhabitedIsType, 
dependent_functionElimination, 
productElimination, 
independent_functionElimination
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,c':Point.
    (out(a  cc')  {}\mRightarrow{}  ((a\_b\_c  \mwedge{}  a  \mneq{}  b)  \mvee{}  (a\_c\_b  \mwedge{}  a  \mneq{}  c))  {}\mRightarrow{}  out(a  c'b))
Date html generated:
2019_10_16-PM-01_24_00
Last ObjectModification:
2018_11_08-AM-11_44_15
Theory : euclidean!plane!geometry
Home
Index