Nuprl Lemma : geo-between-out-implies-out2

e:EuclideanPlane. ∀a,b,c,c':Point.  (out(a cc')  ((a_b_c ∧ a ≠ b) ∨ (a_c_b ∧ a ≠ c))  out(a c'b))


Proof




Definitions occuring in Statement :  geo-out: out(p ab) euclidean-plane: EuclideanPlane geo-between: a_b_c geo-sep: a ≠ b geo-point: Point all: x:A. B[x] implies:  Q or: P ∨ Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q or: P ∨ Q and: P ∧ Q member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a prop: basic-geometry: BasicGeometry geo-out: out(p ab)
Lemmas referenced :  geo-between_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-sep_wf geo-out_wf geo-point_wf geo-between-out geo-out_transitivity geo-out_inversion geo-between-sep
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalHypSubstitution unionElimination thin sqequalRule unionIsType productIsType universeIsType cut introduction extract_by_obid isectElimination hypothesisEquality applyEquality hypothesis instantiate independent_isectElimination because_Cache inhabitedIsType dependent_functionElimination productElimination independent_functionElimination

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,c':Point.
    (out(a  cc')  {}\mRightarrow{}  ((a\_b\_c  \mwedge{}  a  \mneq{}  b)  \mvee{}  (a\_c\_b  \mwedge{}  a  \mneq{}  c))  {}\mRightarrow{}  out(a  c'b))



Date html generated: 2019_10_16-PM-01_24_00
Last ObjectModification: 2018_11_08-AM-11_44_15

Theory : euclidean!plane!geometry


Home Index