Nuprl Lemma : geo-between-same-side2

e:BasicGeometry. ∀[A,B,C,D:Point].  ((¬B_C_D) ∧ B_D_C))) supposing (A ≠ and A_B_C and A_B_D)


Proof




Definitions occuring in Statement :  basic-geometry: BasicGeometry geo-between: a_b_c geo-sep: a ≠ b geo-point: Point uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] not: ¬A and: P ∧ Q
Definitions unfolded in proof :  guard: {T} subtype_rel: A ⊆B prop: false: False and: P ∧ Q implies:  Q not: ¬A uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x]
Lemmas referenced :  geo-point_wf Error :basic-geo-primitives_wf,  Error :basic-geo-structure_wf,  basic-geometry_wf subtype_rel_transitivity basic-geometry-subtype geo-sep_wf not_wf geo-between_wf geo-between-exchange3 geo-between-inner-trans geo-between-symmetry geo-between-same-side
Rules used in proof :  instantiate equalitySymmetry equalityTransitivity isect_memberEquality lambdaEquality productEquality sqequalRule applyEquality voidElimination because_Cache promote_hyp productElimination independent_pairFormation independent_functionElimination independent_isectElimination isectElimination isect_memberFormation hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution hypothesis lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution extract_by_obid introduction cut

Latex:
\mforall{}e:BasicGeometry.  \mforall{}[A,B,C,D:Point].    (\mneg{}((\mneg{}B\_C\_D)  \mwedge{}  (\mneg{}B\_D\_C)))  supposing  (A  \mneq{}  B  and  A\_B\_C  and  A\_B\_D)



Date html generated: 2017_10_02-PM-06_17_21
Last ObjectModification: 2017_08_05-PM-04_12_31

Theory : euclidean!plane!geometry


Home Index