Nuprl Lemma : geo-between-same-side2
∀e:BasicGeometry. ∀[A,B,C,D:Point].  (¬((¬B_C_D) ∧ (¬B_D_C))) supposing (A ≠ B and A_B_C and A_B_D)
Proof
Definitions occuring in Statement : 
basic-geometry: BasicGeometry
, 
geo-between: a_b_c
, 
geo-sep: a ≠ b
, 
geo-point: Point
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
and: P ∧ Q
Definitions unfolded in proof : 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
false: False
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
Lemmas referenced : 
geo-point_wf, 
Error :basic-geo-primitives_wf, 
Error :basic-geo-structure_wf, 
basic-geometry_wf, 
subtype_rel_transitivity, 
basic-geometry-subtype, 
geo-sep_wf, 
not_wf, 
geo-between_wf, 
geo-between-exchange3, 
geo-between-inner-trans, 
geo-between-symmetry, 
geo-between-same-side
Rules used in proof : 
instantiate, 
equalitySymmetry, 
equalityTransitivity, 
isect_memberEquality, 
lambdaEquality, 
productEquality, 
sqequalRule, 
applyEquality, 
voidElimination, 
because_Cache, 
promote_hyp, 
productElimination, 
independent_pairFormation, 
independent_functionElimination, 
independent_isectElimination, 
isectElimination, 
isect_memberFormation, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
hypothesis, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
extract_by_obid, 
introduction, 
cut
Latex:
\mforall{}e:BasicGeometry.  \mforall{}[A,B,C,D:Point].    (\mneg{}((\mneg{}B\_C\_D)  \mwedge{}  (\mneg{}B\_D\_C)))  supposing  (A  \mneq{}  B  and  A\_B\_C  and  A\_B\_D)
Date html generated:
2017_10_02-PM-06_17_21
Last ObjectModification:
2017_08_05-PM-04_12_31
Theory : euclidean!plane!geometry
Home
Index