Nuprl Lemma : geo-between-sep1

g:EuclideanPlane. ∀a,b:Point.  ∀[x:{x:Point| a_x_b ∧ a ≠ x} ]. a ≠ b


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane geo-between: a_b_c geo-sep: a ≠ b geo-point: Point uall: [x:A]. B[x] all: x:A. B[x] and: P ∧ Q set: {x:A| B[x]} 
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] uimplies: supposing a guard: {T} subtype_rel: A ⊆B prop: squash: T and: P ∧ Q implies:  Q sq_stable: SqStable(P) euclidean-plane: EuclideanPlane member: t ∈ T uall: [x:A]. B[x] all: x:A. B[x]
Lemmas referenced :  geo-sep_wf geo-between_wf geo-primitives_wf euclidean-plane-structure_wf euclidean-plane_wf subtype_rel_transitivity euclidean-plane-subtype euclidean-plane-structure-subtype geo-point_wf set_wf geo-between-sep sq_stable__geo-sep
Rules used in proof :  because_Cache productEquality lambdaEquality independent_isectElimination instantiate applyEquality isectElimination imageElimination baseClosed imageMemberEquality sqequalRule productElimination independent_functionElimination hypothesis hypothesisEquality rename setElimination thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut isect_memberFormation lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b:Point.    \mforall{}[x:\{x:Point|  a\_x\_b  \mwedge{}  a  \mneq{}  x\}  ].  a  \mneq{}  b



Date html generated: 2017_10_02-PM-03_29_01
Last ObjectModification: 2017_08_04-PM-09_07_24

Theory : euclidean!plane!geometry


Home Index