Nuprl Lemma : geo-between-sep1
∀g:EuclideanPlane. ∀a,b:Point.  ∀[x:{x:Point| a_x_b ∧ a ≠ x} ]. a ≠ b
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
geo-between: a_b_c
, 
geo-sep: a ≠ b
, 
geo-point: Point
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
uimplies: b supposing a
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
squash: ↓T
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
sq_stable: SqStable(P)
, 
euclidean-plane: EuclideanPlane
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
Lemmas referenced : 
geo-sep_wf, 
geo-between_wf, 
geo-primitives_wf, 
euclidean-plane-structure_wf, 
euclidean-plane_wf, 
subtype_rel_transitivity, 
euclidean-plane-subtype, 
euclidean-plane-structure-subtype, 
geo-point_wf, 
set_wf, 
geo-between-sep, 
sq_stable__geo-sep
Rules used in proof : 
because_Cache, 
productEquality, 
lambdaEquality, 
independent_isectElimination, 
instantiate, 
applyEquality, 
isectElimination, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
sqequalRule, 
productElimination, 
independent_functionElimination, 
hypothesis, 
hypothesisEquality, 
rename, 
setElimination, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
isect_memberFormation, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b:Point.    \mforall{}[x:\{x:Point|  a\_x\_b  \mwedge{}  a  \mneq{}  x\}  ].  a  \mneq{}  b
Date html generated:
2017_10_02-PM-03_29_01
Last ObjectModification:
2017_08_04-PM-09_07_24
Theory : euclidean!plane!geometry
Home
Index