Nuprl Lemma : geo-cong-preserves-strict-bet-out
∀e:BasicGeometry. ∀a,b,c,a',b',c':Point.  (a-b-c 
⇒ ab ≅ a'b' 
⇒ ac ≅ a'c' 
⇒ out(a' b'c') 
⇒ a'-b'-c')
Proof
Definitions occuring in Statement : 
geo-out: out(p ab)
, 
basic-geometry: BasicGeometry
, 
geo-strict-between: a-b-c
, 
geo-congruent: ab ≅ cd
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
geo-strict-between: a-b-c
, 
and: P ∧ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
cand: A c∧ B
, 
geo-out: out(p ab)
, 
basic-geometry: BasicGeometry
, 
uiff: uiff(P;Q)
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
prop: ℙ
Lemmas referenced : 
geo-cong-preserves-bet-out, 
geo-strict-between-implies-between, 
geo-inner-three-segment, 
geo-between-symmetry, 
geo-congruent-iff-length, 
geo-length-flip, 
geo-sep-sym, 
geo-congruent-symmetry, 
geo-congruent-sep, 
geo-strict-between-sep3, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
basic-geometry-subtype, 
subtype_rel_transitivity, 
basic-geometry_wf, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-out_wf, 
geo-congruent_wf, 
geo-strict-between_wf, 
geo-point_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
independent_functionElimination, 
isectElimination, 
independent_isectElimination, 
hypothesis, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
instantiate, 
sqequalRule, 
universeIsType, 
inhabitedIsType
Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,b,c,a',b',c':Point.
    (a-b-c  {}\mRightarrow{}  ab  \mcong{}  a'b'  {}\mRightarrow{}  ac  \mcong{}  a'c'  {}\mRightarrow{}  out(a'  b'c')  {}\mRightarrow{}  a'-b'-c')
Date html generated:
2019_10_16-PM-01_24_28
Last ObjectModification:
2018_11_07-PM-02_35_33
Theory : euclidean!plane!geometry
Home
Index